CHAPTER 7

EVALUATION OF MODEL FIT
AND ADEQUACY

D. Betsy McCoach and Anne C. Black

“All models are false, but some are useful.”
—Box, 1979, p. 202

How do researchers evaluate multilevel models? How should they choose
among competing models? The utility of any model depends upon its abil-
ity to explain the phenomenon under investigation. Therefore, assessment
of model adequacy should consider two aspects of the model: 1) model fit,
or the use of model selection criteria to choose among competing models,
and 2) the explanatory power of the model, or the ability of the predictors
to explain scores on the outcome variable. While model fit is evaluated
relative to other competing models, the explanatory power of the model
may be evaluated both relative to competing models and in an absolute
sense (i.e., does the model do a good or poor job of explaining scores on
the outcome variable?). This chapter explains common measures of model
adequacy within the multilevel modeling literature. Further, we briefly de-
scribe several areas of controversy or confusion surrounding measures of
model adequacy. Finally, we provide recommendations for evaluating the
adequacy of a multilevel model.
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MODEL SELECTION CRITERIA

Model selection should be guided by theory and informed by data. Burn-
ham and Anderson (2004) suggest that three general principles should
guide model selection in the social sciences. First, parsimony is paramount.
Adding additional parameters is likely to improve fit and cannot lead to
worse model fit (Forster, 2000). The critical issue is whether the improve-
ment in the fit of the model justifies the inclusion of the additional pa-
rameters. Second, Burnham and Anderson advocate the use of multiple
working hypotheses. Using data to compare several plausible competing
hypotheses often provides more useful information than comparing a giv-
en model to an often implausible null hypothesis. Third, one of the central
tenets of scientific research is the use of quantitative information to judge
the strength of evidence (Burnham & Anderson). Finally, researchers
should examine the model to ensure that the estimated parameters make
sense and seem plausible.

Model selection is a crucial part of the multilevel modeling process.
How does the researcher select the appropriate model from among sev-
eral competing models? Model selection requires striking a delicate bal-
ance between parsimony and complexity. The researcher’s goal is to “ar-
rive at a model that describes the observed data to a satisfactory extent
but without unnecessary complications” (Snijders & Bosker, 1999, p. 91).
The most common methods of model selection include hypothesis testing
approaches and “information criteria,” or index comparison, approaches.
After briefly reviewing the concept of deviance, we explain how to use the
chi-square difference test to compare the deviances of two nested models.
We then review the use of index comparison approaches, such as the AIC
and BIG, for model selection. Finally, we explain the use of R-squared type
measures to determine the predictive power of the multilevel model. Re-
searchers must consider both the fit and the predictive ability of a given
multilevel model to determine the adequacy of the model.

Deviance

Maximum likelihood estimation techniques provide estimates for the
values of the population parameters that maximize the probability of ob-
taining the observed data (Singer & Willett, 2003). A likelihood function
“describes the probability of observing the sample data as a function of the
model’s unknown parameters” (Singer & Willett, p. 66). The parameter
estimates are those estimates that maximize the likelihood function. When
we use maximum likelihood (ML) to estimate the parameters of the model,
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the estimation also provides the likelihood, which easily can be transformed
into a deviance statistic (Snijders & Bosker, 1999).

The deviance compares the log-likelihood of the specified model to
the log-likelihood of a saturated model that fits the sample data perfectly
(Singer & Willett, 2003, p. 117). Specifically, deviance = -2 (log-likelihood
of the current model—log-likelihood of the saturated model) (-2LL)
(Singer & Willett). Therefore, deviance is a measure of the badness of fit
of a given model; it describes how much worse the specified model is than
the best possible model (Singer & Willett). Deviance statistics cannot be
interpreted directly since deviance is a function of sample size as well as
the fit of the model. However, differences in deviance can be interpreted
for competing models, if those models are hierarchically nested, use the
same data set, and use full maximum likelihood estimation techniques to
estimate the parameters.

In full maximum-likelihood estimation, the estimates of the variance and
covariance components are conditional upon the point estimates of the
fixed effects (Raudenbush & Bryk, 2002). When using full maximum likeli-
hood (FIML), the number of parameters includes both the fixed effects
and the variance and covariance components. Restricted maximum likeli-
hood (REML) estimates of variance-covariance components adjust for the
uncertainty about the fixed effects; FIML estimates do not (Raudenbush &
Bryk). When the number of level-two units is large, REML and FIML results
will produce similar estimates of the variance components. However, when
there are few level-two units, the maximum likelihood estimates of the vari-
ance components (t.,) will be smaller than those produced by REML, and
the REML results may be more realistic (Raudenbush & Bryk). The devi-
ances of any two nested models that differ in terms of their fixed and/or
random effects can be compared when using FIML. However, REML only
allows for comparison of nested models that differ in their random effects
(Snijders & Bosker, 1999, p. 89).

Hypothesis Testing

Hypothesis testing is one of the most commonly utilized model selection
methods (Weaklim, 2004). In multilevel modeling, researchers often use
chi-square difference tests to compare the fit of two different models. In
addition, hypothesis tests are used to evaluate whether fixed effects, ran-
dom level-one coefficients, and variance components are statistically sig-
nificantly different from zero (Raudenbush & Bryk, 2002). Finally, general
linear hypothesis testing using the Wald statistic allows researchers to test
composite hypotheses about sets of fixed effects (Singer & Willett, 2003).
Because this chapter is devoted to the determination of model fit issues, we
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focus our attention on the use of chi-square difference tests to determine
the adequacy of the multilevel model.

Chi-square Difference Test

Two models are nested when one model is a subset of the other (Kline,
1998). In other words, in nested models, “the more complex model includes
all of the parameters of the simpler model plus one or more additional pa-
rameters” (Raudenbush, Bryk, Cheong, & Congdon, 2000, p. 80-81). If two
models are nested, the deviance statistics of two models can be compared
directly. The deviance of the simpler model (D,) minus the deviance of the
more complex model (D,) provides the change in deviance (AD= D, - D,).
The simpler model always will have at least as high a deviance as the more
complex model, and generally the deviance of the more complex model will
be lower than that of the simpler model. In large samples, the difference
between the deviances of two hierarchically nested models is distributed as
an approximate chi-square distribution with degrees of freedom equal to
the difference in the number of parameters being estimated between the
two models (de Leeuw, 2004). We refer to the number of parameters in the
larger (less parsimonious) model as p, and the number of estimated param-
eters in the smaller (more parsimonious) model as p,.

In evaluating model fit using the chi-square difference test, the more
parsimonious model is preferred, as long as it does not result in signifi-
cantly worse fit. In other words, if the model with the larger number of
parameters fails to reduce the deviance by a substantial amount, the more
parsimonious model is retained. Therefore, when the change in deviance
(AD) exceeds the critical value of chi-square with (p, — p,) degrees of free-
dom, the difference in the deviances is statistically significant. In this situ-
ation, we favor the more complex model. However, if the more complex
model does not result in a statistically significant reduction in the deviance
statistic, we favor the more parsimonious model.

Full maximum likelihood estimation maximizes the likelihood of the
sample data, whereas restricted maximum likelihood estimation maximizes
the likelihood of the residuals (Singer & Willett, 2003, p. 118). In FIML, the
number of reported parameters includes the fixed effects (the y’s) as well
as the variance/covariance components. When using REML, the number
of reported parameters includes only the variance and covariance compo-
nents. To compare two nested models that differ in their fixed effects, it
is necessary to use FIML estimation, not REML estimation. REML only al-
lows for comparison of models that differ in terms of their random effects
but have the same fixed effects. Because most programs use REML as the
default method of estimation, it is important to remember to select FIML
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estimation to use AD to compare two hierarchically-nested models with dif-
ferent fixed effects.

An Example
Consider the following model:

K‘,‘:BOj'*'Blj(IQ)g“"sz (7.1)
Bo; = Yoo + Yo1(SchoolSES) ; + uy;
Bi, = Y10+ Y11 (SchoolSES) ; +uy

Remember, the number of estimated parameters in FIML is equal to the
number of fixed effects (y’s) plus the number of variance covariance com-
ponents. In this example, there are four fixed effects (Yy, ¥y, ¥;0,2nd ¥,,). In
addition, there are four variance covariance components (6%, the variance
of r,; Ty, the variance of u; 1, the variance of y,; and 1, the covariance
of 4, and u,.). Therefore, there are eight estimated parameters in FIML.
In contrast, the number of estimated parameters in REML is simply the
number of variance/ covariance components (6% the variance of 7,; T,), the
variance of u,; T, the variance of %, ; and 7, the covariance of u,;and u,..).
In this example, there are four estimated parameters in REML.

Imagine we wanted to compare the model above to the following model,

a model in which the SES/IQ slope remains constant across schools:

Y; =B()j +B;(1Q); + 1 (7.2)
Boj =Yoo + Yo (SchoolSES) ; + u;
B1; = Y10 + Y11(SchoolSES);

We are no longer estimating a variance for u,; or the covariance of w;
and u, i Therefore, model 2 contains six estimated parameters in FIML and
two estimated parameters in REML. The difference between the deviance
of model 1 and model 2 could be compared using either REML or FIML
since the two models vary only in their variance-covariance components.
Assume that the deviance of model 1 is 32, and the deviance of model 2
is 45; therefore, the difference between the deviances is 13. We compare
this to the critical value of ¥* with two degrees of freedom (which is 5.99).
Because 13 is larger than 5.99, we reject the null hypothesis that the simpler
model provides an equally good fit to the data, we determine that the sim-
pler model fits significantly worse than the more complex model (the more
complex model fits significantly better than the simpler model). Therefore,
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we conclude that we cannot make the proposed simplifications, and we opt
in favor of the more complex model.
Finally, consider model 3, as compared to our initial model, model 1.

Y; =\BOj+B1j(IQ)z‘j+7;’j (7.3)
Boj =Yoo + Yo (SchoolSES) ; + u;

B, =Yt uw,

Model 3 eliminates the cross-level interaction between School SES and
IQ. Model 3 contains seven estimated parameters in FIML (three fixed ef-
fects: Yy, ¥y, and ¥, and four random effects: 6%, 1, T,;, and 7,,.) However,
model 3 has four estimated parameters in REML, just as model 1 did. This
demonstrates that models 1 and 3 are nested models in FIML but not in
REML.

Other Model Selection Techniques

Using hypothesis testing procedures is one of the most commonly em-
ployed model selection methods in multilevel modeling. However, the hy-
pothesis testing approach to model selection has been criticized on several
grounds (Raftery, 1995). First, with large sample sizes, most null hypoth-
eses are rejected. Therefore, the use of hypothesis tests for model selection
can produce very complex models (Weaklim, 2004). Second, when a given
model is selected from multiple models, pvalues do not have the same in-
terpretation as they do when only two models are considered, and pvalues
can be misleading in this situation (Raftery). “By choosing among a large
number of variables, one increases the probability of finding ‘significant’
variables by chance alone” (Raftery, p. 118). In addition, classical hypoth-
esis tests do not necessarily identify a single best model (Weaklim). While
significance tests permit the researcher to reject or fail to reject the null
hypothesis, significance tests do not actually provide evidence in support
of the null hypothesis (Raftery). In other words, we have no evidence that
the model we failed to reject is better than or preferable to the comparison
model; we only can say that it is not significantly worse than the compari-
son model. Therefore, the more parsimonious model can be rejected, but
it can never be ‘confirmed’ (Weaklim). By convention, researchers gener-
ally choose the most parsimonious model that is not rejected, selecting the
simplest model unless there is statistical evidence suggesting the more com-
plex model is preferable. However, this process cannot answer the question
of which model is better. “Null hypothesis testing only provides arbitrary
dichotomies (e.g., significant vs. non-significant), and in the all-too-often-
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seen case in which the null hypothesis is false on a priori grounds, the test
result is superfluous” (Burnham & Anderson, 2004, p. 266). Since all mod-
els are simplifications of reality, all models are likely to be misspecified to
a certain degree. Therefore, hypothesis tests do not provide guidance to
help select an imperfect but parsimonious model (Gelman & Rubin, 1995).
Further, hypothesis tests do not aid researchers in deciding whether the
lack of fit of a parsimonious model is a problem in practice (Gelman &
Rubin). Finally, hypothesis testing procedures do not quantify how much
better a particular model is. Because hypothesis testing does not allow us to
quantify the degree of fit or misfit; we cannot quantify the degree to which
one model should be preferred over another.

However, the largest drawback of the hypothesis testing approach is that
it only permits the comparison of nested models. It is often impossible to
compare competing hypotheses using nested statistical models (Raftery,
1995). This is especially true when the models embody dissimilar or contra-
dictory views of the process or phenomenon under examination (Raftery).
Because hypothesis testing procedures only allow for comparison of nested
models, if we wish to compare two models with different sets of predictors,
we cannot use the chi-square difference test or any other hypothesis testing
procedure. In this situation, model selection indices, such as the Akaike In-
formation Criterion (AIC) and the Bayesian Information Criterion (BIC),
are particularly helpful because they allow us to rank or compare models
with different sets of parameters.

AIC and BIC

While model index comparison approaches, such as AIC and BIC, have
received relatively little attention within the educational literature, their
use is quite common within the sociological literature. (See, for example,
Sociological Methods and Research, Volume 33(2), 2004, a special issue devoted
to model selection issues in sociology). Information theoretic model selec-
tion represents, in some sense, the converse of classical hypothesis testing
procedures (Bozdogan, 1987). Information theoretic techniques focus on
“choosing a critical value which then determines, approximately, what the
significance level is or might be” (Bozdogan, p. 363); whereas, in statistical
significance testing, the researcher sets the probability of Type I error (al-
pha), which then determines the critical value.

There are several advantages to using the AIC or the BIC rather than
relying upon deviance statistics and chi-square difference tests to evaluate
the goodness of fit of a multilevel model. First, the AIC and BIC allow the
comparison of non-nested models. As long as the sample remains constant,
AIC and BIC allow the comparison of competing models, whether or not
they are hierarchically nested. Further, selection indices such as the AIC
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and the BIC quantify the degree to which the given model represents an
improvement over comparison models.

The Bayesian approach to model selection regards every competing
model as the possible “true” model, and then estimates the likelihood that
the model in question is, indeed, the correct model (Zucchini, 2000). For
the AIC, the prediction of future data is the key criterion of the adequacy
of a model (Kuha, 2004). Therefore, although the formulas for the BIC
and the AIC appear similar, the philosophical underpinnings of the two ap-
proaches differ dramatically. The field of sociology tends to favor the BIC;
whereas, econometricians tend to prefer the AIC (Kuha, 2004). Whether
researchers should use the AIC or the BIC for model selection purposes has
been the subject of much debate and scrutiny (Kuha, 2004; Weaklim, 1999,
2004). We choose to sidestep the controversy surrounding the choice of the
AIC or the BIC. Rather, we believe that the combined use of the AIC and
the BIC (in conjunction with chi-square difference tests for nested models)
can be quite informative. While our explanations of the AIC and BIC are
conceptually and mathematically shallow, we believe that they will serve the
applied researcher. Those interested in the conceptual and methodological
underpinnings of the AIC and the BIC should refer to Bozdogan (1987),
Burnham and Anderson, (2004), Raftery (1995), Schwarz (1978), Wagen-
meyers and Farrell (2004), and Zucchini (2000).

Not all software programs provide AICand BICmeasures in their output.
HLM 6.04 does not provide estimates of AIC and BIC; however, SPSS, SAS,
R, and MPLUS do provide these indices. Both the AIC and the BIC can be
computed easily from the deviance statistic. Because AIC and BIC are com-
puted from the deviance statistic, FIML generally is considered the most
appropriate estimation method to use when computing information crite-
ria (Verbeke & Molenberghs, 2000). However, a recent simulation study by
Gurka (2006) suggests that information criteria such as the AIC and BIC
also may perform at least as well under REML as they do under FIML. Fur-
ther research is needed to determine whether information indices such as
the AIC and BIC can be used with REML, but Gurka’s results suggest that
the use of information criteria under REML may not be as problematic as
was once believed.

The Akaike Information Criterion (AIC). The formula for the AIC is shown
below.

AIC=D+2p (7.4)

where D is deviance and p = the number of parameters estimated in the
model.

To compute the AIC, simply multiply the number of parameters by two
and add this product to the deviance statistic. As you will recall, the deviance
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(or —2log-likelihood [-2LL]) represents the degree “of inaccuracy, badness
of fit, or bias when the maximum likelihood estimators of the parameters of
a model are used” (Bozdogan, 1987, p. 356). The second term, 2p, imposes
a penalty based on the complexity of the model. When there are several
competing models, the model with the lowest AIC value is considered to be
the best model. Because the AIC’s penalty term is equal to 2p, the deviance
must decrease by more than 2 per additional parameter in order to favor
the model with greater numbers of parameters.

Compare this to the chi-square difference test for model selection. The
critical value of ¥?with one degree of freedom at o = .05 is 3.84. Therefore,
when comparing two models that differ by one degree of freedom, the chi-
square difference test actually imposes a more stringent criterion for re-
jecting the simpler model. In fact, this is true for comparisons of models
that differ by seven or fewer parameters. Therefore, using the chi-square
difference test will result in an equivalent or more parsimonious model
than using the AIC when comparing models that differ by seven or fewer
parameters. However, when comparing models that differ by more than
seven parameters, the AICwill favor more parsimonious models.

The Bayesian Information Criterion (BIC). The BIC is equal to the sum of
the deviance and the product of the natural log of the sample size and the
number of parameters. The formula for the BICis shown below.

BIC=D+In(n)*p (7.5)

where Dis deviance (-2LL),
p = the number of parameters estimated in the model, and
n = the sample size.

Therefore, the BICimposes a penalty on the number of parameters that
is impacted directly by the sample size. In multilevel models, it is not entirely
clear which sample size should be used with the BIC: the number of units at
the lowest level, the number of units at the highest level, or some weighted
average of the two. SAS PROC MIXED uses the number of independent
sampling units as the sample size when computing the BIC. In contrast,
SPSS and R use the level-one sample size in their computation of the BIC.
Therefore, even though SPSS and SAS will produce identical -2LL and AIC
values, the BIC value will differ across these programs. Since the BIC im-
poses a steeper per parameter penalty as the sample size increases, the BIC
value produced by SPSS and R will be larger than the BIC value produced
by SAS, and it will tend to favor more parsimonious models. MPLUS also
uses the level-one sample size in the computation of BIC. However, because
growth models in MPLUS would typically be formulated in the wide or mul-
tivariate format, the effective sample size used for the computation of the



254 D.B. McCOACH and A.C. BLACK

BICin MPLUS is the number of people in the sample. Thus, the choice of
sample size for the computation of the BIC is not without controversy. Fu-
ture research should address the impact of this choice on model selection.
In the meantime, researchers should carefully consider which sample size
they are implicitly or explicitly using in their computation of the BIC.

However, even at small sample sizes, the BIC will favor more parsimoni-
ous models than the AIC or traditional chi-square difference tests. Given a
sample size as low as 50, the penalty for the BICis 3.912 times the number of
parameters. In contrast, the penalty for the AICis two times the number of
parameters, and the rejection region for traditional chi-square difference
tests is 3.84 for one parameter, 5.99 for two parameters, etc.

The model with the lowest BICis considered to be the best fitting model.
Raftery (1995) provided guidelines for interpreting changes in BIC. Sub-
tract the BIC for model 2 from the BIC for model 1 to compute a BIC dif-
ference (BIC, - BIC,). Raftery suggests that BIC differences of 0-2 provide
weak evidence favoring model 2 over model 1, BIC differences of 2—6 pro-
vide positive evidence for favoring model 2, BIC differences of 6-10 provide
strong evidence favoring model 2, and BIC differences above 10 provide
very strong evidence favoring model 2 over model 1.

The central question in model selection is how much additional infor-
mation a given parameter must add to justify its inclusion (Weaklim, 2004).
Figure 7.1 provides a graph of the decision values for the chi-square differ-

Decision Values for 1 parameter

—— AIC
-i- BIC
—o— Chi Diff

Decision value

100 200 300 400 500 600 700 800 900 1000 1100 1200 1300 1400 1500 1600 1700 1800 1900 2000
Sample size (n)

Figure 7.1 Critical decision values for AIC, BIC, and chisquare difference mea-
sures with successive increases in sample size of 100.
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ence test, the AIC, and the BIC for two nested models that differ by one pa-
rameter at a variety of sample sizes. The y-axis shows the change in deviance
necessary to favor the more complex model over the simpler model. In the
figure, this quantity is called the “decision value.” The figure clearly shows
that for one-parameter tests, the AIC placed the least stringent criterion for
favoring the more complex model. The BIC places the most stringent cri-
terion for favoring the more parsimonious model, and the penalty that the
BIC imposes becomes increasingly stringent as the sample size increases.
However, the relationship between the BIC and the sample size is curvilin-
ear, and increasing the sample size has very little impact on the decision
value of the BIC once the sample reaches 10,000 or greater. For example,
the penalty for a sample size of 10,000 is 9.21; the penalty for a sample size
of 20,000 is 9.90; the penalty for a sample size of 30,000 is 10.31.

Figure 7.2 provides a graph of the decision values for the chi-square dif-
ference test, the AIC, and the BIC with sample sizes of 200, 1000, and 5000
for nested models as a function of the change in the number of parameters.
When comparing models that differ by a small number of parameters (sev-
en or fewer), the AIC will result in the most complex models. The BIC will
always favor more parsimonious models than the AIC or the chi-square dif-
ference test, and this effect is especially pronounced at larger sample sizes.

90 -
80 - AcC
-0 chiz
70 ] —A— BIC200
-0~ BIC1000
-m- BIC5000
60 4
[
2
S 501
c
2
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-2 40
3
a
30
20
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Change in number of parameters

Figure 7.2 Critical decision values for AIC, BIC, and chisquare difference measures
where n = 200, 1000, and 5000, as number of parameters increases from 1 to 10.
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In conclusion, of the three model selection techniques, BIC favors the
most parsimonious models, regardless of sample size. The AIC and the chi-
square difference test often will provide similar results. However, the chi-
square difference test favors more parsimonious models for smaller chang-
es in the number of parameters, and the AIC favors more parsimonious
models in the case of larger changes in the number of parameters. The BIC
explicitly takes sample size into consideration, while chi-square and AICdo
not. It is important to remember that the chi-square difference test only
can be used to compare nested models. However, the AIC and the BIC can
be used to compare both nested and non-nested models. Our recommen-
dation is to examine AIC, BIC, and chi-square difference tests (for nested
models). Most of the time, the three methods will converge upon the same
decision. When there is a discrepancy among the three indices, we recom-
mend using professional judgment and knowledge of the research area to
guide decision making.

Example

To illustrate the use of the hypothesis testing and model selection ap-
proaches, we turn our attention to Table 7.1, which contains fixed and ran-
dom effects estimates for six different models, and to Table 7.2, which con-
tains their associated fit statistics. We illustrate a model-building approach
to model the between- and within-school variability of students’ reading
achievement at the beginning of kindergarten using the Early Childhood
Longitudinal Study, Kindergarten Cohort (ECLSK). (See chapters 2 and 6
of this volume (Stapleton & Thomas, 2008, and O’Connell, Goldstein, Rog-
ers, & Pens, 2008, respectively) for details about the ECLS-K dataset.) The
sample size for this analysis includes 7215 first-time kindergarteners in 578
kindergartens. To enable comparison of models that differed in their fixed
effects using the chi-square difference test and to compute the B/Cand AIC
values, we estimated all models using FIML. The models in Table 7.1 utilize
a small set of student- and school-level predictors to explain students’ read-
ing achievement in the fall of the kindergarten year. Student-level variables
include age and SES. School-level variables include school type (public/
private), the percentage of students who receive free lunch in the school
(a measure of school SES), and the percentage of minority students in the
school. Model 1 is the baseline model. As a control variable, it includes the
number of months of kindergarten the student attended prior to taking the
reading achievement test. Model 2 adds the student’s age at kindergarten
entry as a level-one predictor. As seen in Table 7.1, the fixed effect of SES is
statistically significant (the parameter estimate is .36; the standard error is
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.02). However, we are most interested in using the change in deviance and
the AIC and BIC to assess the fit of the two models.

To use the chisquare difference test to compare the two models, we
compute the change in deviance (AD) and the change in the number of
estimated parameters (Ap) and compare these values to the critical value
of chisquare with Ap degrees of freedom. First, we compare model 1, the
baseline model, to model 2, a model which adds (grand-mean centered)
age of kindergarten entry as a level-one predictor. The change in deviance is
50,819.43 — 50,608.21 = 211.22. The change in the number of parameters is
5—4=1. We compare 211.22 to the critical value of chi-square with one de-
gree of freedom, which is 3.84. Because 211.22 > 3.84, we reject the null hy-
pothesis that the two models fit the data equally well, and we favor the more
complex model. The additional parameter results in improved model fit.

Using AIC, we favor the model with the smaller AICvalue. Table 7.2 shows
that the deviance for model 1 is 50,819.43 with 4 parameters. Therefore the
AlICis 50,819.43 + 2*4, or 50,827.43. The AIC for model 2 is 50,608.21 + 5*2,
or 50,618.21. Using AIC, we conclude that the model that includes age is
superior to the model that does not include age.

Finally, we compare the BIC values for the two models. For these ex-
amples, we used the number of level-two units as the sample size for the
computation of the BIC. For completeness and for comparison purposes,
Table 7.2 provides 2 different BIC estimates: the BIC computed using the
number of level-2 units as the effective sample size and the BIC computed
using the number of level-1 units as the effective sample size.

Using 7 = the number of level 2 units, the BIC for model 1 in Table 7.2
is 50,819.43 + 4*In(578), or 50,844.87. The BIC for model 2 is 50,608.21 +
5*In(578), or 50,640.01. The BIC for model 2 is smaller than the BIC for
model 1, so we again conclude that model 2 provides better fit to the data
than model 1. In addition, the change in BIC (204.86) is greater than 10.
Therefore, according to Raftery’s (1995) rules of thumb, the difference in
BIC provides very strong evidence for favoring model 2 over model 1. In
this case, we would draw the same conclusions regarding model selection if
we were to use the BIC computed using the level-one sample size.

Model 3 includes SES as a student-level predictor of beginning kinder-
garten reading. The slope of SES is random; therefore, the inclusion of
SES adds three additional parameters to the model: one fixed effect (y,,)
and two random effects (T, and 1,,). The fixed effect of SES is statistically
significant, and both additional random effects (t,, and t,,) are also statisti-
cally significant. However, to assess the model fit, we examine the effects
of adding these three parameters on the change in deviance, the AIC, and
the BIC. Adding these three additional parameters decreases the deviance
from 50,608.21 to 49,847.04. This change in deviance of 761.17 exceeds the
critical value of 7.82, the critical value of chi-square with three degrees of
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freedom at o = .05. In addition, the AICis substantially smaller in the model
that includes SES (49,863.04) than in the model without SES (50,618.21).
Finally, the change in BIC from model 2 (50,640.01) to model 3 (49,897.92)
is 742.09. This difference in BIC provides very strong evidence for favoring
model 3 over model 2 (Raftery, 1995).

Finally, let us examine what happens when we add the percentage of
minority students as a level-two (school-level) predictor, and compare the
resulting model (model 6) to the previous model (model 5). First, the per-
centage of minority students does not exert a statistically significant influ-
ence on either the intercept (Y,,) or on the SES slope (y,;). When we com-
pare the two models using the chisquare difference test, the change in
deviance is .42 (49,725.25 — 49.724.82) for a two-parameter change in the
model. This is below the critical value of chi-square with two degrees of free-
dom (5.99); therefore, we fail to reject the null hypothesis and conclude
that the more parsimonious model (without percentage minority students)
does not provide a statistically significantly poorer fit to the data than the
model that includes those two parameters. Further, the AIC is smaller for
the model that does not include percentage of minority students (49,749.25
for model 5 vs. 49,752.82 for model 6). Finally, the BICis smaller for model
5 (49,801.57) than for model 6 (49,813.86), and this difference (12.29)
is larger than 10. Therefore, this difference in BIC provides very strong evi-
dence for favoring model 5 over model 6 (Raftery, 1995).

Summary—DModel Selection Criteria

These examples, in combination with Figures 7.1 and 7.2, demonstrate
that much of the time, the chi-square difference test, the AIC, and the BIC
will converge, and point toward the selection of the same model. In other
situations, the AIC, BIC, and chisquare difference tests may lead to conflict-
ing conclusions. When these results diverge, the researcher must make a
difficult decision about whether he or she favors model parsimony or mod-
el complexity. In borderline cases in which the change in deviance between
two models is relatively small, the BIC favors the more parsimonious model
while the AIC (and the chi-square difference test) favors the more complex
model. In these situations, it is very important for the researchers to use
their substantive knowledge and judgment to reach a conclusion about the
“best model.” Kuha (2004) suggests that when the AIC and the BIC err,
“the AIC tends to favor models that are too large, and BIC models that are
too small. Thus, an optimistic interpretation of these results is that even a
disagreement at least suggests bounds for the range of acceptable models”
(Kuha, p. 222). Very little research has specifically examined the AIC and
BIC within a multilevel framework. However, Whittaker & Furlow (2006)
conducted a simulation study to examine the performance of the AIC and
the BIC under a number of different conditions when estimating two-level



Evaluation of Model Fit and Adequacy 261

hierarchical linear models. They found that when the information indices
did not select the correct model, the AIC tended to select the more param-
eterized (less parsimonious) model, whereas the BIC tended to select the
less parameterized (more parsimonious) model. In this situation, we sug-
gest considering substantive and theoretical issues as well as empirical and
statistical ones. Cudeck and Henley (1991) also provide advice that is useful
in this regard. They suggest that when evaluating the relative performance
of competing models, often the best that can be done is to state clearly the
criteria that are used in the comparison, in conjunction with descriptions
of the models, characteristics of the data, and the purpose for which the
models were constructed; moreover, this is actually a useful accomplish-
ment whose value should not be minimized. Finally, when two competing
models appear to fit the data (almost) equally well, replication studies using
a new sample may be the most effective way to determine which model is
truly “the best.”

In conclusion, it is important to remember that the researcher plays an
important role in the evaluation of model fit. No mechanical data analyt-
ic procedure for evaluating model fit should override human judgment
(Browne, 2000). Examining changes in deviance in combination with mod-
el selection indices, such as the AIC and the BIC, seems to be the most
prudent course of action for evaluating model fit. The rules of thumb pre-
sented earlier provide guidance for the researcher; however, they should
not be used blindly or mechanically.

REDUCTION IN VARIANCE ESTIMATES

Complementary to the use of model fit criteria for model evaluation and
selection, analogs of the squared multiple correlation, R?, may be used to
assess the ability of a given model to explain the data. In ordinary multiple
regression, the squared multiple correlation between the outcome variable
and the linear combination of weighted predictor variables represents the
proportion of variance explained by the regression model and can be con-
verted (by multiplication by 100) to a percent of total variability explained
by the specified linear combination of predictor variables. In this case, the
value of R?is, by calculation as a ratio of sums of squared deviation scores,
always non-negative. Its value always increases or remains stable with the
addition of predictor variables into the model (the value of R’is never re-
duced under these conditions) and can serve as a stand-alone measure of
the predictive capability of a model.!

As multilevel modeling of data has become increasingly accessible to re-
searchers, attention has been given to the need for a comparable measure
of variance explained for these models. Because variance components can
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exist at each level of the multilevel model, the concept of “explained vari-
ance” becomes more complex. Several estimates may be needed for a single
model, and R? may take on reduced,? or even negative, values with the
addition of predictors. This portion of the chapter provides guidelines for
calculating and interpreting these (sometimes anomalous) estimates and
presents the two predominant methods.

The first method for computing and interpreting the multilevel model
version of R?, also sometimes referred to as pseudo-R? (Singer & Willett,
2003), produces an R? statistic for each parameter estimate in the model
(Raudenbush & Bryk, 2002). The statistic is interpreted as the proportional
reduction in variance for that parameter estimate that results from the use
of one model as compared to a base, or comparison, model. The statistic
only can be computed and interpreted as the value of one model relative
to another model and should not be interpreted as an explanation of the
absolute amount of variance in the criterion variable.

The second method of deriving the multilevel R? statistic (Snijders &
Bosker, 1994, 1999) results in separate measures of proportional reduction in
prediction error for levels one (the prediction of Y;) and two (the prediction
of Y)) of the random intercepts only model. These estimates, too, represent
changes in the amount of residual variance that result from the application
of one model relative to a comparison model but make use of total estimat-
ed variance in their computation, as 6° + 1, provides a reasonable estimate
of the sample variance of Y (Snijders & Bosker, 1994).

In using R? with multilevel models, it is important to remain mindful of
the unique interpretation of each estimate in drawing conclusions about
model value,

R?as Proportional Reduction in Variance

At level one, the individual level, 7; represents the random error associated
with the measurement of individual ¢in group j (Singer & Willett, 2003) in rela-
tion to the estimated level-two group mean. Each level-one error is assumed to
be normally distributed with a constant variance, represented as 62 (Rauden-
bush & Bryk, 2002). At the individual level, the proportional reduction in with-
in-groups variance is calculated by first subtracting the level-one variance of
the new model from that of the base model. The ratio of that difference to the
base model level-one variance is interpreted “as a proportion reduction in that
variance” (Kreft & deLeeuw 1998, p. 118). That statistic is computed

(7.6)

2
O,
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where 6 = the estimated level-one variance for the base model and 6‘? =
the estimated level-one variance for the fitted model (Raudenbush & Bryk,
2002).

At level two, population variance components estimates are represented
by T4 and are given for the intercepts® (B,) and each slope estimate (B,
[32].. ...p (ﬂ.) that is not fixed to equal zero and, therefore, is permitted to be
random. At level two, the proportional reduction in the variance of the
intercepts, B, is computed

%00 —%00.
7 (7.7)

Too,

where T, = the estimated variance of the intercepts in the base model and
%m‘ , = the estimated variance of the intercepts in the fitted model.
The result is a proportional reduction in variance that can be attributed to
the predictor(s) unique to the fitted model (Raudenbush & Bryk, 2002).
Likewise, the proportional reduction in the variance of a given slope, 8,
is calculated

T ~ oy (7.8)

T‘[’]I)

where 1, = the estimated variance of slope ¢in the base model and T, ;=
the estimated variance of slope g in the fitted model.

Once a base model has been established, subsequent multilevel models
can be compared to it to determine the resulting proportional reduction
in variance. Note that level-two proportion reduction in variance statistics
only can be compared for models with the same level-one model (Rauden-
bush & Bryk, 2002, p. 150). The estimated reduction is computed sepa-
rately for each parameter estimate (Raudenbush & Bryk, 2002; Singer &
Willett, 2003). For comparison of variance estimates at level one, the null
model, which contains only a random intercept and no level-one predictor
variables, typically is used as the base model, and other level-one models
that include level-one predictors are compared to this null model. For com-
parison of variance estimates at level two, the level-one fitted model (con-
taining level-one but no level-two predictor variables) is used as the base
model for comparison of subsequent models containing level-two predictor
variables.

Example

Table 7.2 contains variance components for several models fit to the
ECLS-K data set, where the outcome is reading achievement of students in
the fall of their kindergarten year. Model 1, which includes a level-one co-
variate, a measure of exposure to kindergarten (in months of instruction),
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serves as the base model. Model 2 includes an additional student-level pre-
dictor, (grand-mean centered) age at kindergarten entry. To determine the
proportional reduction in level-one residual variance that resulted from the
addition of the “age” predictor, the estimated studentlevel variances are
compared according to Equation 7.6 above: (60.48 — 58.70) /60.48 = .029.
This result indicates that only about 3% of the within-group variance, after
accounting for months of kindergarten exposure, is attributable to student
age at kindergarten entry. The bulk of the variance at this level is not ex-
plained by model 2.

The level-two variance estimates (T,,) for the two models are compared
as in Equation 7.7: (13.79 — 13.52) /13.79 = .019. As might be expected, the
between-groups variance is reduced by a negligible amount (less than 2%)
with the addition of the level-one predictor in model 2.

Model 5 (which includes SES, kindergarten exposure, and age of kin-
dergarten entry as level-one predictors, and school sector and percent free
lunch as level-two predictors) was compared to model 3 (a nested model
that did not include the level-two predictors) to estimate proportional re-
duction in variance of the SES-achievement slopes (B, ) using Equation 7.8:
(2.19-2.17)/(2.19) = .01. We conclude that the level-two predictors, school
sector and percent free lunch, in the fitted model do not explain any appre-
ciable variance in the slope when compared to model 3.

The Confounding of Variance Estimates

As stated earlier, the concept of explained variance in multilevel models
is different from that in OLS regression models as the former may involve
multiple variance component estimates. An additional complexity of the
concept in multilevel modeling relates to the confounding of variance com-
ponent estimates across levels. We examine how the level-two variance com-
ponent estimate in the random intercepts only model may be dependent
on the specified level-one model.

When a significant level-one predictor is added to a random intercepts
only model, the level-one variance component is reduced. This is to be ex-
pected. However, under these conditions, the level-two variance component,
Ty, also may be affected (Raudenbush & Bryk, 2002). Its value may increase
or decrease with the addition of the level-one predictor. One explanation
for the change is that, as level-one predictors are added to the random in-
tercept models, the meaning of f, may change Without any predictors in
the model, this estimate represents the mean for group j on the outcome
variable. As predictors are added, the interpretation of B, becomes the out-
come for a person in group jwhose value is zero for all level-one predictors
(Raudenbush & Bryk, 2002). Unless all level-one variables are group mean
centered, it is clear that this estimate, and its variance, T,, should change
with the addition of variables in the level-one model. In the example above,
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the intercept for model 1 represents the average reading achievement for
group j after adjusting for months of kindergarten exposure. In model 2,
the intercept becomes the reading achievement for a student in school j
whose entry age is equal to the grand-mean age of kindergarten entry be-
cause we have grand-mean centered the age variable.

In the random intercepts model, it is possible for level-two proportion
reduction of variance statistics to be reduced or become negative with the
addition of predictor variables at level one. This possibility conflicts with our
interpretation of the traditional R? in OLS multiple regression as a sum of
squares ratio and highlights another complexity in using an analog of R*in
multilevel modeling. Essentially, because of the method by which variance
components are estimated, while adding a level-two variable will decrease
the estimate of 1,, and leave o®relatively unchanged, adding a group-mean
centered variable at level one will decrease the estimate of 6* while increasing
the estimate of T, (Snijders & Bosker, 1994). When a fixed effect has been
added to the model, Snijders and Bosker (1999) suggest that decreases in
the proportion of variance explained of .05 or more in large sample studies
also may be diagnostic of model misspecification.

To illustrate this phenomenon with the ECLSK data set, we compared
a model using group-mean centered SES at level one to the base model
(model 1). The resulting estimate of 62 for the fitted model was 57.01 and
for 1, was 14.07. The proportion reduction in variance for level one was

6,-G7 _60.52-57.01 _
62 6052
where 67 = the level-one variance for the base model and 6‘} = the level-
one variance for the fitted model. Group-mean centered SES explained
approximately 6% of the within-groups variance.
At level two, the proportion of reduction in variance was

Tw, ~Tw, _13.79-1407 _ o
T, 13.79 '

where Ty, = the level-two variance for the base model and Too , = the level-two
variance for the fitted model. This illustrates that the inclusion of group-
mean centered variables actually can increase variance at level two.

For comparison, we estimated the proportion of variance reduction for a
model using grand-mean centered SES. For this model, 6% was 57.28, and T, was
5.58, resulting in a variance reduction estimate at level one of .05 and at level
two of .60. Thus, where essentially no level-two variance was explained (in
comparison to the base model) when the level-one predictor SES was group-
mean centered, 60% of the variance was explained using grand-mean center-
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ing. A great deal of variability between schools on mean reading achievement
can be accounted for by differences in studentlevel SES; however, within
schools, this predictor explains a small proportion of the variance in achieve-
ment, indicating selection effects at the school level.

Generally speaking, group-mean centering will decrease 6* but increase
Ty (Snijders & Bosker, 1994). Therefore, the inclusion of a group-mean
centered variable results in a reduction of unexplained variance at level
one and an increase in unexplained variance at level two. For detailed dis-
cussion about the topic of centering variables and its effect on estimated
variance reduction, we refer the reader to the existing literature (Enders
& Tofighi, 2007; Hox, 2002; Kreft & deLeeuw, 1998; Raudenbush & Bryk,
2002; Snijders & Bosker, 1994, 1999).

R?as Proportional Reduction in Prediction Error

An alternative to estimating parameter-specific proportional reduction
in variance that compensates for the confounding of variance estimates, R*
can be computed as a proportional reduction of prediction error. This method
of variance reduction estimation uses the total, rather than parameter-spe-
cific, variance estimates for each model in the comparison. R*is computed
separately for levels one (the prediction of Y)) and two (the prediction of
Y ;) (Snijders & Bosker, 1994, 1999). Given a random intercepts only model,
the prediction error for individual outcomes (Y)) is equal to the sum of the
level-one and level-two variance components,

G2+ 7. (7.9)

The proportional reduction of prediction error at level one for this mod-
el relative to the base or null model, R,

0'+‘C)
(+t),

=1-7—
(6*+w),

(7.10)

where (6”+ 1,,) = the prediction error for the fitted model and (6°+ T,), =
the prediction error for the base model.

Applying this formula to evaluate model 2 above relative to the base
model (model 1), where 62 +1,, = 74.27 for model 1 and &% + %, = 72.22
for model 2, the level-one proportional reduction in prediction error, R, is
1-(72.22/74.27) = .03

At level two, the prediction error for the group mean, fj,
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=% 4+ (7.11)
nj

where 7, represents the number of units in the level-2 cluster, j. When the
numbers of units within a level-two cluster is unbalanced, there are a few
options for the value of n; (Hox, 2002; Snijders & Bosker, 1994). The re-
searcher can determine a priori a value that is representative of all groups,
use the average group size, or use the harmonic mean of the groups, calcu-
lated as N/[Z]. (l/nj)] (Snijders & Bosker, 1999).

The level-two proportional reduction in the prediction error, R},

G2
—+ Ty
7
—Az—f (7.12)
[0_]
b

where

is the prediction error variance for the fitted model and

&2
—+Tp

is the prediction error variance for the base model.
Applying Formula 12 to evaluate the change in variance at level two
(comparing model 2 with model 1), given a representative value of n =12,

ﬂ+13.52
12

R=1--12 """ _ g0
6048 1379
12

The relative size of values of R? at either level resulting from the two
variance reduction estimation methods (whether they are similar or one es-
timate is larger than the other), depends on the effect of the predictor(s) in
the model at that level. When a predictor significantly reduces the variance
component at level one, and not at level two, the level-one proportion of
reduction in variance estimate will be larger than the proportional reduc-
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tion in prediction error variance at that level because the latter takes into
account the small effect on the level-two variance. The opposite will be true
for the level-two reduction in variance estimates, where the proportional
reduction in prediction error variance will be the larger estimate at that
level (because of the inclusion of the change to 6° in that formula). The
reverse relationships will occur when a predictor variable in a model results
in a significant reduction in level-two variance and has little effect on the
variance estimate for level one.

A benefit of the R%as-proportional reduction in prediction error is the
(relatively) predictable “behavior” of R?under given conditions. When mod-
els are specified correctly and group size is constant at z, population values
of R} and R; will be reduced when explanatory variables are removed, given
the assumption that the variance components at levels one and two (7, and
u,;) are uncorrelated with all predictor variables, X, (Snijders & Bosker, 1994,
1999). However, sample estimates of R} and R; still may decrease when pre-
dictors are added or increase when predictors are deleted from the model
(Snijders & Bosker, 1994, p. 355). Roberts and Monaco (2006) provide an
example of the possibility of negative modeled variance using the propor-
tional reduction in error variance model. A large reduction in value of R?
with the addition of an explanatory variable into a model may be diagnostic
of possible misspecification of the larger model (Snijders & Bosker, 1994).
One “important type” of model misspecification is the restricting of predictor
variables to have the same within- and between-group regression coefficients
when they actually are different in the population (p. 356).

Estimating Variance Reduction in Three-Level Models

Snijders and Bosker (1999) provide a formula for estimating variance at
level one of the three-level random intercept model. This simply involves
adding the variance component from the third level to the formula for
level-one variance in the two-level model (Formula 9), such that the total es-
timated variance equals the sum of the variance components at each level:

6 + 190 + Qoo (7.13)
The level-one proportional reduction in residual variance then is calcu-
lated:
Ao A oA
O™+ Ty +
_ 8 Tt Qu)y - L (7.14)
(0% +Tgo + Qoo )y

where @, represents the variance component at level three (Snijders &
Bosker, 1999).
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Variance Reduction Estimates in Models
with Random Slopes

In a model with random slopes, the relationship between the predic-
tor variable and the dependent variable varies by cluster, and the variance
component (T, ) estimates the variability in this relationship across clusters.
According to Hox (2002), if the multilevel model contains random slopes,
itis “inherently more complex, and the concept of explained variance has
no unique definition” (p. 63). Estimating R} and Rj for models with ran-
dom slopes involves “tedious” calculation (see Snijders & Bosker, 1994).
However, they can be estimated easily by omitting the random slopes and
re-estimating “the models as random intercept models with the same fixed
parts” (Snijders & Bosker, 1999, p. 105). The variance components from
the fixed-slope model then should be used to calculate R? and R? as for
random intercepts models, described earlier (Formulas 10 and 12). This
typically results in estimates that are close approximations of those for the
random slopes model (Snijders & Bosker, 1999).

Summary—Reduction in Variance Estimates

In conclusion, the various multilevel R*type statistics described above
provide measures to compare one model to another in terms of its ability
to account for the variability in a given data set. They are not, however,
without their limitations, regardless of method of estimation. We briefly
have presented two methods to estimate the proportional reduction in vari-
ance. Conclusions about the relative “value” of a model should be made
carefully, with the unique definition of the variance reduction estimate in
mind. When models have random slopes, R?does not have a unique defini-
tion (Hox, 1998; Kreft et al., 1995). The relationship between the level-one
predictor and the dependent variable varies across level-two units, and the
level-two variance estimate is not constant in these models (Snijders & Bosk-
er, 1999). With these caveats in mind, multilevel R? measures can provide a
useful tool to compare the predictive ability of various multilevel models.

CONCLUSION

Measures of model fit and model adequacy discussed in this chapter pro-
vide the researcher with fairly objective methods to compare multilevel
models. However, researchers disagree about the appropriateness of these
measures, and their use has been somewhat controversial. Therefore, it is
important to use these measures thoughtfully and selectively, with attention
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to their limitations. Future methodological research should examine the
properties and performance of these indices to define more clearly their
utility to inform model selection in multilevel applications.

NOTES

1. Reporting adjusted R? in addition to R?is recommended when comparing
regression equations with varying numbers of predictors. Adjusted R?is a cor-
rected estimate of proportion of explained variance, accounting for sample
size and number of predictors in the model (Green & Salkind, 2003).

2. Throughout this chapter, the symbol, R? is used to represent the proportional
reduction in variance in the multilevel model. However, it should not be as-
sumed that this statistic is the mathematical equivalent of, or analogous to,
the squared multiple correlation R? used with OLS multiple regression.

3. The value and interpretation of the intercept, and variance of the intercept, at
level two is influenced by the “location” of the Xvariable (i.e., the decision about
whether and how Xis centered) in level one (Raudenbush & Bryk, 2002).
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