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OVERVIEW

In recent years there have been dramatic advances in the field of multilevel
modeling. These advances, coupled with the addition of new features and
options for statistical output in current multilevel software programs such
as HLM, SAS PROC MIXED and MLwiN (Roberts & McLeod, 2008), have
posed challenges to researchers attempting to communicate the results of
these models to audiences with varying levels of statistical and research exper-
tise. Unlike the area of structural equation modeling for which recommen-
dations and guidelines have been presented to enhance the communication
value of the results (Boomsma, 2000; Hoyle & Panter, 1995; McDonald &
Ho, 2002; Raykov, Tomer, & Nesselroade, 1991}, the field of multilevel mod-
eling has provided few guidelines for conveying research findings.

A recent review of the reporting practices of articles from education and
related journals (Ferron et al., 2006) supports the need for guidelines. In
this review, Ferron et al. analyzed 98 multilevel modeling articles from 19
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journals with an educational or related focus (e.g., American Educational Re-
search Journal, Child Development) to determine how authors addressed the
following issues: (a) model development and specification; (b) data consid-
erations including distributional assumptions, outliers, measurement error,
power, and missing data; (c) estimation procedures; and (d) hypothesis
testing and statistical inference including inferences about variance param-
eters and fixed effects. Overall, the results indicated that in many cases not
enough information was presented to allow readers to fully interpret the re-
sults or replicate the analyses. Additionally, the use of different terminology
such as variance estimates versus random effects and the use of terms (e.g.,
standardized) left undefined by authors present challenges to understand-
ing the results of multilevel analyses.

This chapter offers suggestions for what to present when reporting results
of multilevel analyses and options for how to present these results using text,
tables, and figures. The assumption underlying these guidelines is that the
organization and presentation of multilevel models and their results have
the potential to critically impact the utility and understanding of multilevel
research. These guidelines reflect the realities that are present in most cur-
rent publishing opportunities (e.g., space restrictions in paper journals);
although, with the advent of online publication, issues such as length of
articles and the number of illustrations and tables may be less critical. Be-
cause a single chapter cannot include guidelines for every type of multilevel
model, it is important to clarify that the focus of this chapter is primarily on
what might be termed “traditional” multilevel models. This chapter consid-
ers linear models of continuous outcomes where the random effects are
assumed normally distributed. This allows consideration of two-level appli-
cations where individuals are nested in contexts, such as students nested in
schools, and applications where observations are nested within individuals,
such as growth curve models. Models in which the outcome is represented
by binary, count, or ordinal data are not considered (see O’Connell, Gold-
stein, Rogers, & Peng, 2008, and Raudenbush & Bryk, 2002, for discussions
of these types of applications), nor are multilevel structural equation mod-
els (SEM; Muthén & Muthén, 1998-2004) or multilevel item response mod-
els (Kamata, 2001; Kamata, Bauer, & Miyazaki, 2008).

As with any set of guidelines, flexibility is needed to take into account the
requirements of the publication outlet and the intended audience. For ex-
ample, a novice reader of multilevel studies may be able to interpret graphs
of a growth curve model more easily than a complex equation with coef-
ficients. Reactions to these guidelines by journal editors and researchers
experienced in multilevel modeling can be used to further refine criteria
for reporting multilevel results.

The organization of this chapter parallels the sections and subsections of
many journal articles: (a) research questions, (b) literature review, (c) meth-
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od, (d) results, and (e) discussion. Each section of the journal article can
play a role in enhancing the interpretability and value of results from mul-
tilevel studies. The first section of this chapter presents some common re-
search questions addressed through the use of two-level models. Following
this section, we discuss how the literature review might be used to provide
a rationale for multilevel analyses, including advantages and disadvantages
of this approach. The method section consists of five subsections and offers
suggestions for communicating information about: (a) participants, includ-
ing the number at each level of analysis, sampling procedures, and missing
data; (b) type and limitations of the research design; (c) variables, including
how the variables were coded and procedures used to address measurement
quality; (d) models, including the use of equations for model specification,
the centering of predictors, the process for defining the model, and the ap-
proach used to evaluate model integrity; and (e) estimation and inference,
including technical details of the algorithms for parameter estimation and
approaches used for making inferences about variance parameters, fixed
effects, and level-one coefficients. The results section consists of two subsec-
tions and offers guidelines for presenting: (a) preliminary results on data
quality and (b) results directly tied to the research questions. The discussion
section presents the core elements that should be part of the discussion in
any research study and identifies some elements that are unique to multilev-
el modeling. Finally, a list of questions that generally should be answerable
by the reader of a well-written report of a multilevel modeling application is
provided in the form of a checklist. This checklist summarizes the guidelines
and suggestions presented in this chapter.

RESEARCH QUESTIONS

As a starting point for communicating the purpose of the study and the
appropriateness of using a multilevel approach, the researcher needs to
clearly state the questions under investigation. Once these questions have
been stated, the statistical models that are aligned with these questions,
along with their corresponding assumptions, can be specified. Results
linked to these models and ultimately to the research questions then can
be presented.

There are a variety of multilevel designs focusing on different types of
research questions. With these different research questions come corre-
spondingly different types of results, including preliminary results check-
ing assumptions and those focused directly on the research questions, as
well as multiple formats for presenting results.

For example, multilevel designs in which individuals are measured with-
in some larger unit, such as a classroom, often address questions related to
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how much of the variability in an outcome is associated with within- and be-
tween-group differences, as well as the extent to which various within- and
between-group factors account for this variability. In contrast, multilevel de-
signs in which individuals are measured repeatedly over time often address
questions related to the form of change (e.g., linear, nonlinear), variation
in growth parameters (e.g., intercept and slope), and factors associated
with the variation in the growth parameters (e.g., gender). Table 11.1 pres-
ents examples of some research questions addressed in two-level multilevel
studies and the types of data structures associated with these questions.

LITERATURE REVIEW

In research reports of multilevel analyses, the literature review should de-
scribe how the multilevel nature of the research problem under investiga-
tion has been addressed in the past. For example, has past research dealt
with the unit of analysis issue by ignoring the independence assumption
or by aggregating nested data within units? To provide a connection with
the current application of multilevel modeling, relevant methodological
issues addressed in prior research should be discussed. Through this dis-
cussion, the rationale of using a multilevel approach to address the specific
questions under investigation can be provided along with the advantages
and disadvantages of the multilevel approach. Controversies that are be-
ing discussed in the multilevel literature that are relevant to the current
investigation can be presented (e.g., use of pseudo R? values, use of Akaike’s
Information Criterion [AIC] and the Bayes Information Criterion [BIC]
for model selection). The author of the literature review also can clarify
whether the current multilevel application is a replication of a previous
study, an extension of prior research, or a new line of inquiry.

The literature review also should foreshadow some of the methodologi-
cal decisions that are made in the multilevel modeling phase of the study.
For example, if some or all of the predictors in the models were selected
based on a priori considerations (i.e., theory or previous research versus
exploratory analyses and tests of significance), the connection with the pre-
vious research should be explicit. Similarly, if past research and/or theory
were used to justify decisions about other modeling issues such as the vari-
ance-covariance structures or centering of predictors, these links need to
be made clear. Boote and Beile (2005) have provided additional criteria
in developing the literature review for research studies in general; these
include providing a rationale for what previous literature to include or ex-
clude and a discussion of the practical and theoretical significance of the
research problem.
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TABLE 11.1 Examples of Research Questions Addressed by Two-Level
Multilevel Designs

General question

Applied question

Individuals nested within units

1. How much of the variation in an How much of the variation in eighth-grade
outcome is there within- and between- mathematics achievement is within schools?
groups? How much is between schools?

2. What is the proportional reduction in What proportion of the within-group
the within-group variance when a within-  variation in eighth-grade mathematics
group predictor is added to the model? achievement is associated with students’

seventh-grade mathematics achievement?

3. What is the relationship between a What is the relationship between students’
selected within-group factor and an seventh-grade mathematics achievement
outcome? and students’ eighth-grade mathematics

achjevement?

4. Does the relationship between a selected Does the relationship between students’
within-group factor and an outcome vary ~ seventh-grade mathematics achievement
across the level two units? and students’ eighth-grade mathematics

achievement vary across schools?

5. What is the proportional reduction in What proportion of the variability in average
the between-group variance in a level two eighth-grade mathematics achievement is
parameter (i.e., intercept) when a between-  associated with school SES?
group predictor is added to the model?

6. What is the relationship between a What is the effect of a school mathematics
selected between-group factor and an instructional program on average school
outcome? mathematics achievement for eighth graders?

7. To what extent is the relationship To what extent is the relationship between
between a selected within-group factor students’ seventh-grade mathematics
and an outcome moderated by a selected  achievement and students’ eighth-grade
between-group factor? mathematics achievement moderated by

the school’s mathematics program?
Observations nested within individuals

8. Is the functional form of individual What is the functional form of individual

change linear, quadratic, or cubic? change in reading achievement from
grades 1 to 5?

9. To what extent do individuals vary in To what extent do first graders differ in their
initial status on an outcome? initial status in reading achievement?

10. To what extent do individuals vary in To what extent does the rate of change
their rate of change on an outcome? in reading achievement of elementary

students vary across individuals?

11. What is the relationship between selected ~ To what extent do boys and girls differ in
individual characteristics and initial status?  their initial reading achievement?

12. What is the relationship between selected To what extent do boys and girls differ in
individual characteristics and rate of their rate of reading achievement change?
change?

13. What is the relationship between What is the relationship between initial

individuals’ initial status and their rate of
change?

reading achievement and the rate of
change in reading achievement?




396 J.M. FERRON et al.
METHOD
Participants

Issues of sample size, sample characteristics, sampling procedures, and
power are more complex in multilevel models because of the multiple units
of analysis. For a multilevel design in which individuals, such as students,
are nested within some larger units, such as schools, simply reporting the
total number of students or the total number of schools is not sufficient
because the distribution of students across schools can impact model speci-
fication and the precision of the parameter estimates. In addition, commu-
nicating information about sample sizes requires presenting a rationale for
the number of units selected at each level. This rationale may rely on sta-
tistical power analyses that include considerations of expected effect sizes,
alpha levels, and anticipated attrition and missing data rates (Mok, 1995;
Raudenbush, 1997; Raudenbush & Liu, 2000; Spybrook, 2008).

Table 11.2 provides one approach to communicating sample sizes at
each level of analysis for a multilevel unbalanced design (unequal sample
sizes across units) involving 600 students from 86 schools. If the dataset is
large, it may not be practical to provide a table like Table 11.2. In this case,
researchers could present descriptive information, including the average
number of level-one units per level-two unit, as well as the minimum and
maximum number of level-one units. For example, the information in Ta-
ble 11.2 could be summarized by indicating that there were 86 schools, with
the number of students ranging from 1 to 10 per school, with an average of
about 7 students per school.

TABLE 11.2 Example of Table for Summarizing Sample Sizes
for Students Nested Within Schools in a Two-Level Design

Number of schools Cumulative Cumulative
Number of students with specified frequency frequency
per school number of students of schools of students
1 11 11 11
2 3 14 17
3 6 20 35
4 2 22 43
5 3 25 58
6 2 27 70
7 10 37 140
8 10 47 220
9 10 57 310

—_
(=]
N
©

86 600
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TABLE 11.3 Example of Table for Summarizing Sample Sizes
for Two-Level Growth Curve Design

Number Cumulative
of time points Number % frequency
observed of individuals of individuals of individuals
1 10 7.1 10
2 20 14.2 30
3 16 11.4 46
4 21 15.0 67
5 73 52.1 140

For a multilevel design in which individuals are measured repeatedly
over time, the distribution of the number of observed time points should
be specified. For example, reporting the number of individuals with two
data points, three data points, etc. allows readers to evaluate the possibility
of identifying nonlinear models and the precision of the parameter esti-
mates from these more complex models (see Table 11.3).

Investigators also should describe the type of sampling procedures that
were implemented and discuss if the same sampling procedures were em-
ployed at different levels. For example, schools may be selected randomly,
and students within those schools may be selected randomly, providing a
probability sample at each level. A mixed sampling approach, employing
probability sampling at one level and nonprobability methods at another
level, also may occur. For example, schools may be selected randomly, but
the sample of students at each school may come from teachers who were
willing to participate. In studies using existing data, the original database
may have been collected using complex sampling methods (Stapleton &
Thomas, 2008). In these circumstances, researchers should communicate
the type of sampling such as cluster, stratified, or disproportionate, and the
implications for the use of sampling weights. For datasets that make avail-
able multiple sets of sampling weights, it should be clear what sampling
weights were used in the analysis.

Whatever the sampling approach, it is important to describe the final
dataset in sufficient detail to allow other researchers to be able to critique or
replicate the study. Part of this description should be a discussion of missing
data at each level, the degree to which missingness is related to the variables
being studied, the method used to handle missing data, and the correspond-
ing consequences, such as introduction of bias and reduction in power (for
additional discussion on missing data see Collins, Schafer, & Kam, 2001;
Little & Rubin, 1987; Roy & Lin, 2002). Finally, as part of the description
of the participants, authors may acknowledge that they complied with all
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applicable federal, state, and local regulations and standards related to the
ethical treatment of human subjects.

Research Design

The research design and procedures of the study should be reported
in sufficient detail to allow readers to replicate the study, to judge whether
human subjects were treated ethically, and to critically interpret the results.
A challenge in communicating information about the research design is
that there is a lack of universally accepted terminology (Maciejewski, Diehr,
Smith, & Hebert, 2002). For this reason, researchers need to describe the
essential characteristics of the design (e.g., use of experimental manipula-
tion of variables, use of longitudinal data collection) as well as the limita-
tions of the design. Attention should be drawn to how extraneous variables
were controlled through methods such as randomization, matching, or
statistical adjustments at one or more levels of the analysis. Because these
methods can be implemented in a variety of ways, actual implementation
procedures need to be detailed.

Description of the design also may involve defining terms that might
be used differently across disciplines (for example, omitted variable versus
unmeasured confounder). For details on design issues in multilevel stud-
ies, see Murray (1998) and Murray, Varnell, and Blitstein (2004). By clearly
communicating the design and its limitations, researchers will help readers
to judiciously interpret the results of the multilevel anaylsis.

Variables

Clear descriptions and definitions of the variables under investigation
are essential in communicating information about the research design. Is-
sues that should be addressed include how the variables were coded (e.g.,
dummy/ effect coding), procedures used to form composite variables (e.g.,
items used to form a subscale), procedures used to form aggregate level-two
variables (e.g., average SES of all students at the school, versus average SES
of the students at the school who participated in the study), and at which
level(s) the variables were measured in the multilevel models. One way to
convey these details efficiently is through the inclusion of a codebook in an
appendix that provides information about the variables and their measure-
ment (Lee & Loeb, 2000; Marks, 2000).

Measurement quality of the variables in terms of reliability and validity
is also of critical importance. Most measures in educational studies contain
error, and these errors, if not accounted for, can bias estimates of variance
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parameters, variance ratios, fixed effects, and the standard errors of fixed
effects (Woodhouse, Yang, Goldstein, & Rasbash, 1996). Consequently, re-
searchers need to provide psychometric information on the variables used
in the multilevel analysis. Reliance on estimates of reliability or validity pro-
vided in technical manuals or previously reported research is typically not
sufficient because such estimates are sample specific (Thompson & Vacha-
Haase, 2000). In situations in which the measurement error is substantial,
researchers may consider analytical methods for specifying and adjusting
for the measurement error (Longford, 1993; Woodhouse et al., 1996).

It is helpful to divide the study variables by the level at which they are
measured (e.g., level one, level two, etc.). Researchers investigating a vari-
able that is measured at different levels (e.g., student SES vs. SES of the
school) need to present psychometric information about the variable at
each level and discuss how the variable may have different meanings at dif-
ferent levels. In addition to presenting the variables at each level of analysis,
the role(s) played by the variables in the study should be specified (e.g.,
outcome, predictor, covariate). The role delineation becomes important as
the researcher attempts to communicate the multilevel models under in-
vestigation. For example, in a study examining the question of whether the
relationship between student SES and student mathematics achievement
(i.e., slope) varies across different types of schools, the researcher might
identify student SES as a predictor and specify the B coefficient represent-
ing this relationship as random. In another study examining the effects of
an instructional program on mathematics achievement, student SES may
be used as a control variable, and therefore, the researcher might fix the
variance of the B coefficient to zero.

Models

In view of the complexity of multilevel models, researchers need to ad-
dress multiple issues in their descriptions of their models. First, the statisti-
cal models need to be specified clearly and fully. Second, the method used
to center/scale each variable in the model should be provided. Third, the
process used to derive the models should be communicated to help the
reader understand the degree to which the analyses were exploratory or
confirmatory in nature. Finally, the methods used to examine the integrity
of the model should be detailed to help the reader evaluate the resulting
inferences.

Specification
In multilevel modeling, the statistical models need to be presented in an
understandable manner so that readers can gauge the appropriateness of
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the models for addressing the research questions as well as for replicating
the analyses. Although it is possible to communicate a multilevel model in
words, verbal descriptions are often ambiguous or incomplete, and thus
may not be an efficient way to communicate the model. A more effective
strategy to specify the multilevel model is through the use of one or more
equations for each level of the model. Some software programs, such as
HLM (Raudenbush, Bryk, Cheong, & Congdon, 2004), generate the equa-
tions that specify the model, facilitating insertion into a manuscript.

Consider a researcher who is studying students nested in schools. The
researcher may be interested in the effects of student seventh-grade math-
ematics achievement (Math7) and student SES (SES) on student eighth-
grade mathematics achievement (Math8). A level-one model could be de-
veloped to describe Math8 as a function of Math7 and SES within a specific
school:

Math8; =, +B,; Math7; +B,; SES; +17; (11.1)

i
where Math8, is the eighth-grade mathematics achievement score for the
ith student in the jth school, B, is the intercept of the regression equation
predicting Math8 in the jth school, B, is the regression coefficient indexing
the strength of the association of Math7 with Math8 in the jth school, B,,
is the regression coefficient indexing the strength of the association of stu-
dent SES with Math8 in the jth school, and r, is the error, which is assumed
to be normally distributed with a covariance of Z.

When students are nested in schools, as in this example, £ commonly is
assumed to be 6%, where 67 is the variance and I is a n x n Identity Matrix,
where 7 is the number of level-one units. This implies that the errors are
modeled as if they were sampled independently from a normal distribu-
tion with variance, 62 If multilevel models are used for longitudinal data
in which repeated measures are nested within individuals, one may want
to relax this assumption to allow for the correlation among errors that are
close together in time. A variety of alternative structures including first-or-
der autoregressive have been discussed and presented in the methodologi-
cal literature (Wolfinger, 1993). Note that one step in communicating the
model is to be clear about the assumed structure of .

After specifying the level-one model, the level-two model is specified.
Returning to the example, the level-two model could be used to consider
the effects of school context on Math8. Assume the researcher believes,
either through theory or previous research, that the level of Math8 in the
school depends on whether the school is using an experimental mathemat-
ics instructional program (Program) and the school SES (SchoolSES), and
that Program also moderates the effects of Math7 on Math8. The level-two
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model would use Program and School SES as predictors of some of the co-
efficients of the level-one model. One possible specification could be:

B()j = 'YO() +Y0] PrOg‘IaInj +Y02 SChOOlSES] +u0] (11'2)
Bij =710+ Y1 Program; +u; (11.3)
[52,' =Y (11.4)

where Program, is coded 0 if school j is a control school that does not use
the experimental mathematics program and coded 1 if school jis using the
experimental program; SchoolSES; is the measure of school-level SES at
school j; and Uy, and jare level-two errors, which are assumed to be nor-
mally distributed with a covariance of T. In this example, T, could be speci-
fied in several ways. One way is as a 2 X 2 unstructured covariance matrix,

T
T={ ” ] (11.5)
Tio T

which would imply that there was random variability in the intercepts (7,,)
and in the regression coefficients associated with Math7 (t,,) and that the
errors associated with the intercepts and Math7 coefficients may covary
with each other (7,,). One may find that the data support constraining a
variance to zero, thus reducing the number of elements estimated in T.
Alternatively, one might define the covariance structure so that a greater
number of variance components are estimated. For example, the research-
er also may allow the coefficients associated with student-level SES to vary
randomly; in this case, an error term, u,,, would be added to Equation 11.4,
and T would become a 3-by-3 matrix. Part of communicating the model
involves letting the reader know what structure was assumed for T.

Although it is common in the educational literature to see multilevel
models communicated using regression equations for each level of the
model, it is also possible to combine the regression equations into a single
equation. By substituting the level-two model for 3, B, , and B, in the level-
one model, the following combined model would be obtained:

Math8;; =Y, + Y Program ; + Yy, SchoolSES; +v,, Math7, + (11.6)
Y1 Program ; *Math7,; + Yy SES; + u,; +u;; Math7; +7; ,

which has the same form as the mixed linear model,

y=XB+2Zv+eg, (11.7)
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where y is a vector of outcome data, B is a vector of fixed effects, X and Z are
known model matrices, Vv is a vector of random effects, and € is a vector of
errors (Henderson, 1975). Again, the structure of the covariance matrices
needs to be made explicit. Using mixed model notation, one typically refers
to the covariance matrix of the level-one errors as R and to the covariance
matrix of the level-two errors as G. For the above example, one could indi-
cate that the blocks of R were specified as 6°I and that the blocks of G were
specified as 2 by 2 and unstructured,

G={g“ } (11.8)
81 892

where g, is the random variance in the intercepts, g,, is the random vari-
ance in the regression coefficients associated with Math7, and g, is the
covariance between the errors associated with the intercepts and the Math7
coefficients.

The choice of using equations for each level or a single equation should
be based on the judgment of which method will communicate most easily to
the intended audience. Information for making this decision can be gleaned
from consulting previous issues of the target journal to determine how mul-
tilevel models typically are communicated. If it is judged that the equations
provide too much technical detail for the typical reader, an appendix could
be included (for an example, see Marsh, Koller, & Baumert, 2001).

Centering of Predictors

Centering of the level-one and level-two predictors has implications for
interpreting the results of multilevel models (Kreft & de Leeuw, 1998; Kreft,
de Leeuw, & Aiken, 1995; Morrell, Pearson, & Brant, 1997; Raudenbush
& Bryk, 2002) and, therefore, is an important consideration in reporting
the results. In the example specified in Equations 11.1-11.5, suppose the
seventh-grade mathematics achievement (Math7) was measured on a scale
ranging from 200 to 800, student SES was dummy coded (0 = eligible for
free or reduced lunch, 1 = not eligible), school SES was defined as the pro-
portion of students in the school not eligible for free or reduced lunch, and
the mathematics program variable was dummy coded (0 = control school,
1 = mathematics program school). If Math7 was kept in its natural metric,
Y, would be the predicted eighth-grade mathematics achievement (Math8)
for astudent in a control school with 0% of the students not eligible for free
or reduced lunch, who is individually eligible for free or reduced lunch,
and who has a Math7 score of zero. Since a Math7 score of zero is not
possible, this coefficient is difficult to interpret in a substantively meaning-
ful way. The effect of the instructional program in this model, y,,, would
be interpreted as the difference in the effectiveness of the two programs
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when Math7 was zero (again, a value that is not particularly informative).
Difficulties also would arise in interpreting the variance components. For
example, the random variance in the intercepts, T,,, would be the between-
school variation in predicted Math8 scores for students who are eligible for
free or reduced lunch and who have Math?7 scores of zero. Centering or
rescaling prior mathematics achievement makes the interpretation of the
coefficients and variance components more meaningful.

One approach to scaling predictor variables is to subtract the grand mean
of the predictor variable from each score (xij—ic“); this can be done for vari-
ables at level one or at level two. Using grand-mean centering of Math7 and
school SES in our example, v, is the predicted Math8 score for students
in a control school with sample average school SES, who are individually
eligible for free or reduced lunch, and who have a sample average Math’7
score. Similarly, the effect of instructional program, ¥, is interpreted as the
difference in the effectiveness of the two programs for students having the
sample average of seventh-grade mathematics achievement and the same
individual and school SES.

A second approach to scaling the predictor variable is to subtract the
level-two unit mean of the predictor variable from each score (x‘.]. -x ].); this
centering process can only be done for level-one predictors. Using group-
mean centering of Math7 and grand-mean centering of school SES in our
example, v, is interpreted as the predicted Math8 score for a student in a
control school with sample average school SES, who is individually eligible
for free or reduced lunch, and whose Math7 score was at the sample av-
erage for his or her school. The effect of the experimental program, v,,,
is interpreted as the difference in the effectiveness of the two programs
for students who are at their school’s sample average level of mathematics
achievement and have the same individual SES.

A third approach to scaling a predictor variable is to subtract a theoretical-
ly meaningful value (k) from each score (x;— k). This approach is similar to
grand-mean centering in that a constant is subtracted from each score. The
B,;is interpreted as the expected outcome for individuals at the specific value
that has been set by the researcher. For example, in a growth curve model
examining change in mathematics achievement from grades 1 through 8, a
researcher may center the grade predictor at grade 8. In this case, B is inter-
preted as the expected value of the outcome for a student in eighth grade.

The differences in the substantive interpretation of these regression co-
efficients (fixed effects) illustrate the importance of clearly delineating the
type of centering that has been employed. In addition, centering has con-
sequences for interpreting the variance components. For example, the vari-
ance in the intercepts will depend on how the intercepts are defined, which
in turn depends on the centering. Vague statements that “all predictors
were centered” or that “mean centering was employed to facilitate inter-
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pretation of the models” are not sufficient to insure proper interpretation
of the results. If model estimates are presented in tables, the researcher
should use a table note to describe the type of centering used so that inter-
pretation of parameter estimates readily follows.

Process for Defining the Model

In some situations researchers are able to use theory and past research to
define the multilevel model(s) prior to examining their data. In these situa-
tions the data are used as a check to verify the reasonableness of the model
but not as a means for building the model. Consequently, hypothesis testing
for key parameters and the construction of confidence intervals around an
effect of interest are relatively straightforward. When researchers rely on
the data to help define the model, the research is more exploratory and
strong inference becomes considerably more difficult. To critically examine
the inferences made, the reader needs to fully understand the degree to
which the data were used to develop the model.

Consider, for example, the model specified in Equations 11.1-11.5. Sup-
pose the researcher had made a strong argument supporting the details of
the model specification and that the only decision based on the data was
to allow the errors in the level-two equations to covary. A reader concerned
that this decision may have been incorrect could think through the poten-
tial consequences of estimating a covariance parameter that has a value of
zero in the population. This type of misspecification can negatively affect
the precision in estimating other parameters in the model (Verbeke, 1997)
and sometimes leads to estimation difficulties (Van den Noortgate & Ongh-
ena, 2003; Verbeke, 1997). The reader may conclude that the potential mis-
specification has negligible consequences for interpretation if estimation
difficulties were not encountered and a reasonable level of precision was
obtained for the parameter estimates.

Alternatively (again considering the model specified in Equations
11.1-11.5), suppose the researcher arrived at this model after considering
12 potential predictors of variability in the intercepts and regression coeffi-
cients. The presented model contains only the predictors that were statisti-
cally significant. Again the reader may wish to consider the consequences of
possible misspecifications. Relevant variables may have been omitted from
the model (a possible consequence of insufficient power), which might
lead to substantial biasing of the effect estimates of the included predic-
tors. In this case, readers may judge the potential misspecifications to have
substantial enough ramifications to alter the way they evaluate the results.

Evaluation of Model Integrity
A variety of statistical tools may be employed to obtain information
about the integrity and trustworthiness of a model. Researchers may ex-
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amine fit indices, the degree to which data are consistent with modeling
assumptions, and the sensitivity of parameter estimates to outliers and
changes in model specification. Such examinations may provide support
for, or indicate appropriate caveats related to, the fidelity of model esti-
mates. The clear explication of the results of investigations of model in-
tegrity, including what approaches were taken, what results were obtained,
and what these results suggest about the model reported, is important in
interpreting the study results.

Fit indices may be used to guide selection among alternative models.
The fit indices most commonly used are the deviance statistic (Raudenbush
et al., 2004), AIC (Akaike, 1974), and BIC (Schwartz, 1978). More details
about model fit indices are provided in Chapter 7 of this volume (McCoach
& Black, 2008). It is also important to note, however, that not all multilevel
software packages provide all these estimates of model fit and that not all
researchers use the same indices. Consequently, it is important to be spe-
cific about how model fit was assessed.

Distributional assumptions (normality and equal variance) are made
about the errors at each level in the model. Violations can be suggestive
of specification errors and can lead to biases in the standard errors at both
levels of the model (Raudenbush & Bryk, 2002). The multilevel modeling
results also can be influenced by outliers. There are multiple methods avail-
able to screen data for violations of assumptions (Jiang, 2001; Raudenbush
& Bryk, 2002; Teuscher, Herrendorfer, & Guiard, 1994) and the presence of
outliers (Longford, 2001). Given the variety of methods available, research-
ers need to not only communicate that data were screened for violations of
assumptions and outliers but to note the specific methods used.

Also available are approaches for assessing the impact of outliers, assump-
tion violations, and alternative specification decisions. Bayesian techniques,
such as the Gibbs sampling methods as well as other strategies and algo-
rithms, can be used to examine the impact of extreme observations at ei-
ther level one or level two of the model (Seltzer, Novak, Choi, & Lim, 2002).
Models can be estimated with and without a transformation of a nonnormal
outcome variable to examine the impact of nonnormality on the results (for
an example, see Kochenderfer-Ladd & Wardrop, 2001). Models also can be
estimated under multiple plausible covariance structure specifications to
examine the impact of specification decisions on inferences (Ferron, Dai-
ley, &Yi, 2002). Because multiple methods are available to assess the degree
to which inferences are sensitive to modeling decisions, researchers should
communicate the specifics of any methods utilized.

Collectively, techniques employed to provide evidence of model robust-
ness and sensitivity of parameter estimates to changes in model specifica-
tion will serve to enhance the trustworthiness of an estimated model. For
readers to critically evaluate the results presented and the inferences made,
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they need to know the particulars of the methods used to evaluate model
integrity.

Estimation and Inference

Technical details about estimation of the multilevel model and approach-
es to statistical inference allow readers to evaluate strengths and weaknesses
of the methods selected and to permit replication. As such, these techni-
cal details should be viewed as an integral part of reporting the results. A
variety of issues are subsumed under this topic, including estimation algo-
rithms and the inferential methods used to conduct hypothesis tests and
construct confidence intervals.

Estimation

A variety of methods are available for the estimation of parameters, each
with its own strengths and weaknesses. As such, estimation methods and
algorithms should be identified explicitly in the discussion of parameter
estimation. In addition, identification of the specific software program and
version used for estimation is helpful for readers interested in technical
details about the analysis. In discussing the technical details, it also should
be communicated whether estimation problems were encountered (e.g.,
improper variance estimates) and, if they were, how they were addressed.

Common methods of estimation for multilevel models include maximum
likelihood (ML), restricted maximum likelihood (REML), and Bayesian
(Kreft & de Leeuw, 1998; Raudenbush & Bryk, 2002). These methods of esti-
mation can be carried out using many different algorithms, thus underscor-
ing the need for definitive information regarding estimation methods and
algorithms employed. For example, ML estimation may be accomplished
using the expectation-maximization (EM) algorithm, the Newton-Raph-
son algorithm, the Fisher scoring algorithm, or iterative generalized least
squares (IGLS), while Bayesian estimation may be accomplished using the
Gibbs sampler. These algorithms have been programmed into many dif-
ferent software programs. Thus, one researcher may accomplish REML
estimation using the EM algorithm programmed into HLM (Raudenbush
et al., 2004), another may accomplish REML estimation using restricted
iterative generalized least squares (RIGLS) using MLwiN (Rasbash, Steele,
Browne, & Prosser, 2004), while a third may accomplish REML using the
Newton-Raphson algorithm programmed in SAS PROC MIXED (SAS Insti-
tute Inc., 2000).

Reporting of the estimation method, estimation algorithm, software pro-
gram, and whether estimation problems were encountered can be commu-
nicated effectively in a single sentence in the description of the data analy-
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sis, a footnote, or a technical appendix. The use of less common estimation
approaches, such as bootstrapping, robust ML, and robust REML methods
(Carpenter, Goldstein, & Rasbash, 1999; Meijer, Van der Leeden, & Busing,
1995; Richardson & Welsh, 1995), may require more explication, possibly
in an appendix. ‘

Estimation methods typically will produce point estimates of each pa-
rameter in the multilevel model and these estimates are often valuable in
addressing particular research questions. Additional information about the
parameter estimates often is provided to aid the researcher in making in-
ferences, possibly taking the form of hypothesis tests and/or confidence
intervals for parameters of interest. Clear communication of the types of es-
timates calculated and details about the approach employed are important
for valid interpretation of such inferential statistics. When considering the
options available, it becomes important to distinguish between inferences
made about variance parameters (elements in X and T), fixed effects (y’s),
and random level-one coefficients (e.g., ).

Inferences about Variance Parameters

The simplest approach to creating a confidence interval (CI) for a vari-
ance parameter is to use the standard error of the variance parameter esti-
mate, computed from the inverse of the information matrix. By adding and
subtracting 1.96 times the standard error of the parameter estimate, one
can create a 95% CI, assuming a normal sampling distribution. This ap-
proach, however, has limitations, especially when the sample size is small or
the variance parameter is near zero (Littell, Milliken, Stroup, & Wolfinger,
1996; Raudenbush & Bryk, 2002). For such data, researchers may consider
other options, including the Satterthwaite approach (Littell et al., 1996),
bootstrapping (Carpenter et al., 1999; Meijer et al., 1995), a method based
on local asymptotic approximations (Stern & Welsh, 2000), and, if the data
are balanced, an approach based on a set of quadratic forms (Yu & Burdick,
1995). These alternative methods can lead to different results. If other re-
searchers are to critically evaluate or replicate the analysis, they need to
know the specific methods used. Consequently, this is another technical
detail that should be reported.

For researchers wishing to test hypotheses regarding variance parameters,
a similar variety of choices is available. The simplest approach would be to
conduct a ztest by dividing the estimate by its standard-error. Although this
approach is asymptotically valid, like the standard error based Cls noted
previously, it becomes questionable when the sampling distribution cannot
be assumed normal. Alternative approaches include a likelihood ratio %?
(Littell et al., 1996), an approximate x? test described by Raudenbush and
Bryk (2002), bootstrapping (Carpenter et al., 1999; Meijer et al., 1995), and
a likelihood ratio test based on the local asymptotic approximation (Stern



408 .M. FERRON et al.

& Welsh, 2000). Again, different choices can lead to different results and
thus the method should be reported.

Inferences about Fixed Effects

Inferences about fixed effects may be obtained from confidence inter-
vals for the effects of interest. For example, a 95% CI could be constructed
around the point estimate by adding and subtracting 1.96 times the stan-
dard error. This approach assumes a normal sampling distribution, which
can be demonstrated asymptotically, but which becomes questionable for
smaller samples. Consequently, one may utilize a critical #value with v de-
grees of freedom. Several methods for defining the degrees of freedom
have been given (Giesbrecht & Burns, 1985; Kenward & Roger, 1997), and
some software packages allow for different definitions to be specified. An
alternative to assuming an approximate t-distribution is to turn to boot-
strapping to construct the confidence intervals.

Hypothesis tests also can be conducted using # or Ftests with approxi-
mate degrees of freedom. Again, different approximations have been sug-
gested, and thus, researchers need to be clear about the method used for
obtaining the degrees of freedom for these tests. Several alternatives to
these approximate tests have been discussed. These include a test based on
a Bartlett-corrected likelihood ratio statistic (Zucker, Lieberman, & Manor,
2000), a permutation test (Reboussin & DeMets, 1996), and bootstrapping.
Researchers using one of these methods should specify the approach that
was used and the rationale.

Inferences about Level-One Coefficients

Researchers also may be interested in estimating the random level-one
coefficients and making inferences about these coefficients. For example,
a researcher who is interested in estimating the effects of seventh-grade
mathematics achievement on eighth-grade mathematics achievement may
wish to obtain a separate effect estimate for each school. Again, there are
multiple choices for estimation and inference, and it is important for the
researcher to convey the choices made.

One approach would be to estimate the level-one model separately for
each school using ordinary least squares (OLS) estimation methods, in
which case standard methods are available for constructing confidence in-
tervals and testing hypotheses about coefficients. With this approach the
estimate for a specific school is based only on information from that school,
which may be just a few observations. By failing to use the information from
the other schools, the obtained estimate is not as precise as it could be.

An alternative is to obtain Empirical Bayes estimates, which consider all
available information. Empirical Bayes estimates tend to pull each school’s
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effect estimate toward a value predicted by the model, with the amount of
adjustment depending upon the uncertainty in the effect estimate being
considered and the variability in the effect estimates. This process biases
the estimates but provides values that tend to be closer to the parameter
values than those based on OLS estimation, resulting in a smaller expected
mean square error (Raudenbush & Bryk, 2002). For Empirical Bayes esti-
mates, the standard errors can be computed and used for the creation of
confidence intervals or z-tests of statistical significance.

RESULTS

Researchers may consider reporting at least two types of results: (a) pre-
liminary results that address the properties and quality of the data (e.g.,
measures of central tendency, reliability of outcomes, predictors, and level-
one coefficients such as intercepts and slopes), missing data patterns and
relationships of missing data to relevant variables, model assumptions in-
cluding normality and homogeneity of variance, and model building steps;
and (b) primary results directly addressing the research questions. Two ex-
amples are used to illustrate various approaches to reporting results. The
first considers a two-level model examining mathematics achievement of
students nested in schools; the second involves a two-level growth curve
model of reading achievement.

Preliminary Results

Tables presenting descriptive univariate information about the vari-
ables under investigation (e.g., mean, standard deviation, range, skew-
ness, kurtosis) and correlations among variables are common in published
research. With a few format changes in these tables, important informa-
tion about the variables in the multilevel models can be communicated
efficiently. Examples of this type of information are illustrated based on
data for the two-level mathematics achievement example in Table 11.4
(univariate statistics) and Table 11.5 (correlations). Dividing the study
variables by the level at which they are measured provides information
about the potential variables available for model building at each level
and their distributional properties. Inclusion of sample sizes for each vari-
able provides information about missing data, with implications for issues
related both to statistical power and to potential convergence and estima-
tion problems in model development.
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TABLE 11.4 Example of Table for Presenting Descriptive Data for
Variables in Two-Level Model with Students Nested Within Schools

Variable N M SD Skewness Kurtosis Outliers
Level one
Math8 2000 303.25 31.06 0.20 0.45 None
Math7 1967 303.15 51.12 -0.01 -0.12 None
Student SES 2000 0.25
Level two
School SES 40 0.25 0.16 -0.21 0.28 None
Program 40 0.50

Note: Math8 is eighth-grade mathematics achievement; Math7 is seventh-grade mathematics
achievement; Student SES is coded 0 if eligible for free or reduced lunch and 1 if not
eligible; School SES equals the proportion of students in the study at a school that are
not eligible for free or reduced lunch; Program is coded 0 for a control school and
1 for a program school; and an outlier was defined as an observation exceeding 1.5
interquartile ranges beyond the st or 3rd quartile.

TABLE 11.5 Example of Table for Presenting Pearson Product
Moment Correlations for Variables in Two-Level Model with
Students Nested Within Schools

Level one (N = 1967)

Math8 Math7 Student SES
Math8 1.00
Math7 0.59 1.00
Student SES 0.18 0.14 1.00

Level two (J = 40)

School SES Program
School SES 1.00
Program -0.02 1.00

Note: Math8 is eighth-grade mathematics achievement; Math7 is seventh-grade
mathematics achievement; Student SES is coded 0 if eligible for free or
reduced lunch and 1 if not eligible; School SES equals the proportion of
students in the study at a school that are not eligible for free or reduced
lunch; Program is coded 0 for a control school and 1 for a program school;
the Nof 1967 is based on listwise deletion.

As part of the presentation of descriptive information, it is important to
distinguish what outcome variables are being examined in the research ques-
tions and then to present descriptive information about these outcomes. The
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potential for confusion on this issue can be illustrated with the growth curve
modeling example for reading achievement in which a researcher was inter-
ested in examining changes in reading achievement from grades 1 to 5 and
the factors associated with these changes. The researcher may identify read-
ing achievement as the outcome variable and then only present descriptive
statistics and psychometric information, such as reliability estimates, for read-
ing achievement at each grade level. Given that the researcher’s focus is on
changes in reading achievement, the outcome variable is technically the slope
parameter estimate and, therefore, descriptive information (minimum, max-
imum, mean, standard deviation, skewness, kurtosis) both for EB and OLS
slope estimates along with reliability estimates should be presented. Similar
information should be presented if intercepts (e.g., initial status in a growth
curve) are the focus of the research questions (see Table 11.6). The reliabil-
ity estimates for the slope and intercept parameters, which are calculated in
some software programs, can be used to make decisions about whether these
coefficients should be specified as fixed or random and also provide infor-
mation about the extent to which relationships between predictors and the
coefficients may be attenuated.

An alternative way to communicate information about the distribution
of intercepts and slopes efficiently is to provide a graphical display of the
reading trajectories. If the number of level-two units is too large for a clear
visual display of all units, the researcher could provide a visual display based
on a random sample of the level-two units (see Figure 11.1). In addition to

TABLE 11.6 Example of Table for Summarizing Reading Achievement
for Two-Level Growth Curve Model

Outcome N Min Max M SD Skewness Kurtosis Outliers
OLS

Intercept 100 1685 2735  220.0 245 0.01 -0.48 None
(initial status)

Slope 100 -30.4 150.6 539 371 0.23 -0.05 None
(yearly change)

EB

Intercept 100 186.6 247.7 220.0 13.7 -0.23 -0.07 None
(initial status)

Slope 100 -33.2 1485 539 359 0.19 -0.08 None

(yearly change)

Note: OLS is Ordinary Least Squares; EB is Empirical Bayes; the time variable was scaled in
yearly increments from grades 1 to 5 with zero corresponding to the beginning of the
study (grade 1); an outlier was defined as an observation exceeding 1.5 interquartile
ranges beyond the 1st or 3rd quartile; and reliability of OLS regression coefficient
estimates for intercepts and slopes were .80 and .45, respectively.
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Figure 11.1 Example of fitted OLS linear regressions of reading achievement on
grade level for a random sample of 50 students.
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Figure 11.2 Example of a stem-and-leaf plot presenting R? values for fitted OLS
regressions of reading achievement on grade level for 100 students.

summarizing the slope and intercept distributions, it is also useful to sum-
marize R? values (see Figure 11.2) for the individual OLS regression mod-
els. Displays summarizing the R? values for different growth models (linear
or quadratic) then could be used to support decisions about the choice of
model while at the same time providing a scaffold for the multilevel results
addressing the research questions. Another way of summarizing the level-
one regression would be to include a table listing the R? values along with
the OLS level-one equations.

As part of these preliminary analyses, the researcher should commu-
nicate details about the data that may impact modeling in the primary
analyses. It is important to discuss issues of nonnormality, heteroscedastic-
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ity, multicollinearity, and outliers. Potential violations of the underlying
assumptions need to be examined thoroughly and communicated clearly
to the reader. In addition to reporting any anomalies that are found dur-
ing data screening, researchers should document analysis decisions that
are made in light of the data. For example, a researcher may transform a
variable to improve normality or use an alternative covariance structure to
address heteroscedasticity. In situations where how to proceed is somewhat
ambiguous, researchers also should provide information on the degree to
which the results are sensitive to the data anomalies or alternative model-
ing decisions. Given the space requirements of many journals, the results
of data screening activities will need to be summarized concisely, and some
of the technical details may need to be handled through footnotes, or an
appendix.

Preliminary analyses should include computing the intraclass correla-
tion coefficient (ICC). The ICC, derived from an unconditional model with
no within- and between-group predictors (also called the one-way random
effects ANOVA model, or the empty model), provides baseline informa-
tion for evaluating the relative contributions of within- and between-group
predictors.

Primary Results

In presenting the primary results from multilevel analyses, researchers
should provide a listing of all estimated parameters for each model that is
interpreted, while also striving to focus the reader’s attention on the spe-
cific estimates and results that address the research questions. This can be
challenging because the links between the questions, models, and statisti-
cal results are not always as apparent as they would be in applications using
simpler statistical models. Focus can be achieved by adding visual cues such
as bold-faced type in tables (see Wainer, 1997), by including statements in-
terpreting the key parameter estimates in the narrative, and by illustrating
effects using graphical displays.

Example 1: Students Nested within Schools

Consider again the example where eighth-grade mathematics achieve-
ment is being predicted based on seventh-grade mathematics achievement,
student SES, school SES, and whether or not the school had used the math-
ematics program. Suppose the primary purpose of the research is to esti-
mate the effects of the mathematics program on eighth-grade mathematics
achievement and the degree to which the program’s effect depends on pri-
or achievement (seventh-grade mathematics achievement) of the students.
The researcher may wish to start by pointing the reader to a table with
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the complete listing of the parameter estimates and an indication of the
precision of these estimates (e.g., standard errors or confidence intervals).
There are several ways to structure such a table. One possibility is to use the
format shown in Table 11.7, where predictors are listed in rows, and col-
umns are used for different models. This format parallels a relatively stan-
dard way of reporting and comparing multiple regression models, which
may facilitate a reader’s understanding of the results. This table includes
symbols commonly used to refer to fixed effects (e.g., ¥, ¥,,) and variance
estimates (e.g., 6% T,,) along with brief descriptors. The included symbols
match those used when the model was specified (Equations 11.1-11.5) to
facilitate the connection of the estimates in the table to the parameters in
the model. An alternative method for tabular representation of multilevel
analysis results can be found in Ethington (1997).

Since the primary focus of this analysis is on estimating the effect of the
mathematics instructional program, the narrative should provide an inter-
pretation of the estimated program effect (¥,,), which as noted previously
would depend on how the variables were scaled or centered. For example,
assuming grand-mean centering of Math7, the effect estimate, ?01, would
be interpreted in a statement such as: “students with a sample average level
of seventh-grade mathematics achievement who are in a school with the
mathematics instructional program are predicted to have an eighth-grade
mathematics achievement score that is ¥, points higher than similar stu-
dents in a control school.”

Attention should also be drawn to the cross-level interaction effect (y,,),
which suggests that the difference in expected eighth-grade mathemat-
ics achievement between programs is not constant across seventh-grade
achievement levels. A graphical display of predicted eighth-grade math-
ematics achievement as a function of seventh-grade mathematics achieve-
ment and program (see Figure 11.3) could be constructed using the equa-
tions with estimated parameter values. This graph helps to communicate
the degree to which the program effect differs for students of varying levels
of seventh-grade mathematics achievement.

An alternative display could be constructed by graphing the program
effect as a function of seventh-grade mathematics achievement, where the
program effect is defined as the difference in expected eighth-grade math-
ematics achievement between comparable program and control students
at a specified level of seventh-grade mathematics achievement. Confidence
interval bands then could be added (Tate, 2004), and the range of seventh-
grade mathematics achievement scores for which the difference between
programs is statistically significant would become apparent. An example
using 95% confidence interval bands is provided in Figure 11.4.
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Figure 11.3 Graphical illustration of the effect of the mathematics program on
eighth-grade mathematics achievement as a function of seventh-grade mathemat-
ics achievement for low SES students from a school with average SES.
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Figure 11.4 Graphical illustration of the mathematics program effect (solid line)
and 95% confidence interval (dotted lines) as a function of seventh-grade math-
ematics achievement.

In addition to graphical displays designed to illustrate effects of interest,
researchers sometimes compute pseudo R? values, giving the proportion
of the variance at a particular level associated with the effect of interest
(Kreft & de Leeuw, 1998; McCoach & Black, 2008; Snijders & Bosker, 1994).
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Given that alternative calculations have been debated in the literature, it is
important to specify the particular method used to estimate the pseudo R?
value. In addition, it is important to be aware that the use of such indices
is controversial and thus researchers providing these indices should do so
carefully and in a manner that recognizes the limitations of the methods.
For applications illustrating the use of pseudo R? values, see McCoach and
Black, 2008, and Singer and Willett (2003).

Some researchers have provided standardized effect estimates by stan-
dardizing the regression coefficients from the multilevel model (Purcell-
Gates, Degener, Jacobson, & Soler, 2002). Different methods can be used
to standardize (e.g., across total sample versus within level-two units), and
thus, it is important to communicate the details of the standardization
process. As with pseudo R? values, the standardization of regression coef-
ficients is controversial. For example, Willett, Singer, and Martin (1998)
concluded that standardized regression coefficients may be misleading and
caution against their use. Others have argued that for experimental stud-
ies, such as cluster-randomized trials, standardized effect sizes should be
calculated and presented (Spybrook, 2008). Before presenting this type of
information, researchers should critically evaluate whether it adds to their
results and, if so, to present the information along with a discussion of the
limitations of standardization.

Example 2: Growth Curve Model

As asecond example, consider a longitudinal study of changes in reading
achievement over the elementary years, where the research questions focus
on the form of change (e.g., linear, nonlinear), the variation in growth
parameters (e.g., intercept and slope), and gender differences in initial
status and changes in reading achievement. After preliminary results have
been presented, a table listing variance and covariance estimates, fixed ef-
fects, and fit indices for models where different growth trajectory forms
were assumed can be useful to summarize information pertinent to ques-
tions of trajectory form and variability. Assume the researcher considered
three models (an intercept only model, a linear growth trajectory model,
and a quadratic growth trajectory model) and that for each, X was assumed
to be 6°I and T was assumed to be unstructured. One way of presenting the
results for comparison of the models is provided in Table 11.8.

After identifying an appropriate form for the growth trajectories and
determining the variability in the growth parameters, the researcher could
address the question of the degree to which the growth trajectories dif-
fer for boys and girls. Assume the quadratic growth curve model best fit
the data based on the AIC and BIC and that there was sufficient variation
in the intercepts, linear, and quadratic terms, to use each of the growth
parameters as an outcome in the examination of gender differences. The
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TABLE 11.9 Example of Table Summarizing REML Parameter
Estimates for the Model Relating Gender to Reading Growth Curves

Intercepts (r,) Linear terms (r,) Quadratic terms (n,)

Fixed effects

Intercept (B /’0) Estimate 201.44 66.99 -5.06
SE 1.95 1.57 1.26

95% CI 197.6 t0 205.3 63.9 to 70.1 -7.610-2.6
Gender (B,)  Estimate 17.48 12.79 0.39
SE 2.76 2.21 1.78

95% CI 12.0 t0 22.9 841t017.1 -3.1t0 3.9
Variances Estimate 123.5 29.5 74.0
SE 27.9 19.9 11.4

Note: Time is scaled in years and is centered so that zero corresponds to the beginning
of first grade; Gender is dummy coded (0 = Male, 1 = Female); residual level-one
variance, 6%, is 75.3, and the error covariances between intercept and linear, intercept
and quadratic, and linear and quadratic terms are 7, = 32.1, 1,, = -15.1, and 1,, = 14.8;
CIs were constructed using degrees of freedom estimated through the containment
method; estimates based on 100 students, each with five observations.

multilevel model using gender as a predictor of each growth parameter
could be arranged using a format that parallels Table 11.7 or Table 11.8, or
alternatively, it could be arranged so that the columns corresponded to the
growth parameters (intercept, linear term, quadratic term) and the rows
correspond to the variables used to predict each growth parameter. This
type of arrangement is provided in Table 11.9.

The interpretation of the coefficient describing the effect of a predictor
such as gender on an intercept parameter is relatively straightforward once
the type of centering has been specified, and it parallels the interpretation
of an effect for a predictor variable in a multiple regression model. How-
ever, the interpretation of a coefficient describing the effect of a predictor
such as gender on either the linear or quadratic parameter estimate is more
complex and, in fact, addresses the question of a cross-level interaction (i.e.,
does gender moderate the relationship between time and reading achieve-
ment?). Given this complexity, it is suggested that a graphical display of this
cross-level interaction be constructed using the equations with estimated
parameter values and then presented to aid interpretation (see Figure 11.5
for an example).

In summary, several suggestions have been made for communicating
preliminary and primary results. Preliminary results should be presented
that include univariate summaries of the variables under investigation, the
' correlations among these variables, summaries of the distributions of the
random level-one coefficients, and the ICC. Primary results should include
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Figure 11.5 Graphical illustration of the predicted reading achievement trajecto-
ries of girls and boys based on a quadratic model with time measured in years and
centered so zero corresponds to the beginning of first grade.

all parameter estimates of interpreted models (typically in a table) along
with indications of the precision of these estimates (i.e., standard errors or
confidence intervals). These tabular results should be supplemented with
narrative interpretation, effect size calculations, and/or graphical displays
to bring attention to the specific estimates or results that address the re-
search questions.

DISCUSSION

The discussion section provides researchers an opportunity to evaluate, in-
terpret, and qualify the results of the study. Researchers should provide a
concise statement about the relationship between the results and the origi-
nal research questions, emphasizing any practical as well as theoretical im-
plications. Description of the limitations of the study resulting from the
type of design, sampling, measurement procedures, and analysis should be
provided. Researchers can link their findings to past research and articulate
the degree to which the results are generalizable based on the study design
and analyses.

General guidelines for discussing the results of empirical studies, such
as those provided in the Publication Manual of the American Psychological Asso-
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ciation (American Psychological Association, 2001) or the American Medical
Association Manual of Style (Iverson et al., 1998), should be augmented by
consideration of specific issues relative to multilevel modeling. Such issues
might include: (a) what information is provided by the multilevel approach
that was not provided in previous investigations that relied on the use of
more traditional analyses (e.g., multiple regression) and (b) how the re-
sults may have been impacted by the decisions made during the multilevel
model development and estimation.

SUMMARY

This chapter has provided a series of suggestions organized around the sec-
tions traditionally reported in published research. Some suggestions echo
general recommendations made for reporting research, discussing issues
such as sampling, variable selection, research design, and the connection
between research questions and analyses (e.g., AERA Task Force on Re-
porting Research Methods, 2006). Other suggestions are more specific to
multilevel modeling, focusing on issues such as estimation and inference,
the nature of multilevel data, and reporting multilevel results.

To summarize these suggestions, a list of questions was developed that
generally should be answerable by the reader of a well-written report of a
multilevel modeling application. Mirroring the structure of a research re-
port, these questions are organized into five categories: (1) research study
(e.g., What sampling strategy was used?), (2) model specification (e.g., How
many models were estimated?), (3) estimation and inference (e.g., What
method of estimation was used?), (4) data (To what degree were data con-
sistent with distributional assumptions?), and (5) results (Which specific
results addressed each research question?). These questions are presented
in the form of a checklist in Table 11.10.

Those preparing reports of multilevel modeling applications could use
this checklist as a tool, asking themselves whether the consumer of the re-
search report could answer these questions. Alternatively, one might ask
colleagues to review a manuscript and attempt to answer the questions. The
ability of colleagues to answer the questions may suggest areas that warrant
additional attention and clarification.

The manner in which multilevel results are organized and presented
has the potential to critically impact the utility, understanding, and cred-
ibility of the research. This belief motivated the writing of this chapter and
informed the development of suggestions as to what to present and how
to present multilevel results. These suggestions will need to be evaluated
critically in the context of novel applications and may need further refine-
ment as the techniques used in multilevel modeling evolve. Nonetheless,
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TABLE 11.10 Checklist for Report of Multilevel Study
Could the reader answer the following gener ions about the xtudy? Yes N/A

1 lyse .
What is the valldlty cvndence for cach varlable?’

o1

_about del specification? Yes N/A

What process was used dsﬁ :
What method was used to cvaluatc modcl ﬁt’
‘How was each vanab

Could the reader answer the followmg questions about estimation and ny’erence? Yes N/A
W}mt software and version .
What method of estimation was used (e.g., REML ML)»‘

W::re csumatmn pmblams (e. g . impro vanancgggumams} éncountered?*
If estimation problems were encountered, how were they addressed?

‘What methods were 1 : o
Could the reader answer the followmg quexhons about the data? Yes N/A

_ r,each model?

‘Which specific rest
What was the ICC?

Note: N/A = Not applicable
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it is hoped that these suggestions will be useful to researchers reporting
multilevel modeling applications and will serve to improve the consistency
and clarity of the reported results from multilevel analyses.
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