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Appropriately centering Level 1 predictors is vital to the interpretation of intercept and slope
parameters in multilevel models (MLMs). The issue of centering has been discussed in the
literature, but it is still widely misunderstood. The purpose of this article is to provide a
detailed overview of grand mean centering and group mean centering in the context of 2-level
MLMs. The authors begin with a basic overview of centering and explore the differences
between grand and group mean centering in the context of some prototypical research
questions. Empirical analyses of artificial data sets are used to illustrate key points through-
out. The article provides a number of practical recommendations designed to facilitate

centering decisions in MLM applications.
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Multilevel models (MLMs) have enjoyed widespread use
in the behavioral sciences in recent years. These models are
attractive because they provide a straightforward mecha-
nism for analyzing data sets in which study participants are
clustered within organizational units (e.g., clients nested
within therapists, students nested within schools, individu-
als nested within families, employees nested within compa-
nies, daily diary observations nested within individuals). In
contexts such as these, it is often of interest to explore the
influence of variables at both levels of the data hierarchy,
and MLMs readily allow one to examine the influence of
individual (i.e., Level 1) and cluster-level (i.e., Level 2)
covariates.

Psychological constructs are frequently expressed on ar-
bitrary metrics that lack a clearly interpretable or meaning-
ful zero point (Blanton & Jaccard, 2006). Although it is
clearly not a panacea for the problem of arbitrary metrics,
centering can be used to establish a zero point on scales that
otherwise lack such a value. The use of centering for this
purpose is relatively straightforward in ordinary least
squares (OLS) regression (Aiken & West, 1991), but it is
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considerably more complex when considering Level 1 pre-
dictors in an MLM analysis. In the MLM context, Level 1
covariates can be centered at the grand mean (centering at
the grand mean; CGM), or they can be deviated around the
mean of the cluster j to which case i belongs; the latter
option is frequently referred to as group-mean centering in
the MLM literature, but we henceforth refer to this tech-
nique as centering within cluster (CWC) in order to avoid
confusion with CGM. Although both forms of centering can
be used to establish a meaningful zero point, CGM and
CWC generally produce parameter estimates that differ in
value and also in meaning. Although there are unique situ-
ations in which CGM and CWC produce equivalent param-
eter estimates (Kreft, de Leeuw, & Aiken, 1995), this is the
exception rather than the norm.

It should be noted that the centering of Level 2 (e.g.,
organizational level) variables is far less complex than the
centering decisions required at Level 1, as it is only neces-
sary to choose between the raw metric and CGM; CWC is
not an option because each member of a given cluster shares
the same value on the Level 2 predictor. Centering decisions
at Level 2 generally mimic prescribed practice from the
OLS regression literature (Aiken & West, 1991), so the
focus of this article is on centering at Level 1. Throughout
the remainder of the article, we assume that all Level 2
predictors are centered at their grand mean.

The issue of centering predictor variables in MLM has
been discussed in the methodological literature (Hofmann &
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Gavin, 1998; Kreft, 1995; Kreft et al., 1995; Longford,
1989b; Paccagnella, 2006; Plewis, 1989; Raudenbush,
1989a, 1989b; Wu & Wooldridge, 2005), but it is still
widely misunderstood by substantive researchers and meth-
odologists alike. We conducted an informal review of recent
volumes of several American Psychological Association
(APA) journals and found examples of inappropriate cen-
tering practices. For example, there were cases in which the
authors made no mention of the centering technique they
used (Griffin, 2001; Kallestad & Olweus, 2003), making the
resulting regression coefficients difficult, if not impossible,
to interpret. In other cases, authors explicitly stated that
the Level 1 predictors were left uncentered (Balsam,
Beauchaine, Mickey, & Rothblum, 2005), even though a
number of these variables had a raw metric with no mean-
ingful zero point (e.g., age, education, self-esteem, life
satisfaction). It is interesting to note that we also found
cases in which authors based centering decisions on the
results of empirical tests rather than on their substantive
research questions. For example, Wampold and Brown
(2005) stated that “We conducted the analysis using both
parameterizations [CGM and CWC], which yielded the
finding that the within-therapist regression coefficient was
not too different from the between-therapist regression co-
efficient” (p. 918). Similarly, Zohar and Luria (2005)
explained that “When testing moderation effects in this
and subsequent hypotheses, we first tested the effect of
centering of variables in the statistical models ... This
operation resulted in no improvement, and thus it was not
performed in the final model” (p. 623). The decision to
base centering decisions on empirical results is problem-
atic because it should be based on the substantive ques-
tion of interest. Kreft et al. (1995) underscored this point,
stating that “There is no statistically correct choice
among RAS [the raw metric], CGM, and CWC” (p. 17).
It is certainly not our intent to single out these articles as
exemplars of poor practice, nor is it our intent to criticize
these authors. Rather, we use these articles to illustrate
the complexity of centering as a methodological issue
and to demonstrate that confusion exists, even in articles
published in top APA journals.

Given the confusion that exists over centering, the pur-
pose of this article is to provide a detailed overview of CGM
and CWC and to provide a number of practical recommen-
dations designed to facilitate centering decisions in MLM
research. In doing so, we chose to avoid comparisons of
CGM and CWC based on numerical stability or computa-
tional efficiency (e.g., Longford, 1989a). Instead, we at-
tempt to address a relatively simple question: Which form
of centering provides interpretable parameter estimates that
can be used to address a particular substantive research
question?

Our discussion of centering is restricted to the cross-
sectional case, and we do not consider the issue of centering

in longitudinal MLMs (i.e., growth curve models). In the
typical growth curve application, the Level 1 covariate of
interest is a temporal predictor such as age or elapsed
time. In situations such as this, the Level 1 predictor (i.e.,
the “time” variable) is typically centered around a fixed
value rather than around the mean. For example, in a
longitudinal study of adolescent depression, a child’s age
at a particular assessment (i.e., the Level 1 predictor)
could be expressed as a deviation relative to age 16 (e.g.,
Montague, Enders, Dietz, Morrison, & Dixon, 2006), and
this centered age variable would appear in the Level 1
regression model. Centering around a fixed point in time
in a longitudinal study is arguably less complex than the
decision to use CGM or CWC in the cross-sectional
context, so we focus our discussion on the latter situation.
Excellent discussions of centering in the context of
growth curve models are found in Singer and Willett (2003)
and in Biesanz, Deeb-Sossa, Aubrecht, Bollen, and Curran
(2004). However, our discussion of centering does apply to
other types of within-person data structures in which mul-
tiple observations are obtained from each individual but in
which intraindividual variation is not expressed as a func-
tion of elapsed time (e.g., daily diary observations nested
within individuals). Interested readers can consult Nezlek
(2001) for a discussion of multilevel modeling in this con-
text.

Illustrative Data

In order to make our discussion more concrete, we rely on
a hypothetical research scenario from the occupational
stress literature. Specifically, suppose it was of interest to
study the influence of workload (measured by the number of
work hours per week; HOURS) on psychological well-being
(WELLBEING). Furthermore, assume that the data are hi-
erarchically structured such that employees are nested
within workgroups (organizations). In this scenario, both
workload and well-being are Level 1 (i.e., individual level)
variables, but it may also be of interest to investigate the
influence of organizational-level (i.e., Level 2) variables
such as workgroup size (SIZE). Our decision to use an
occupational stress example was somewhat arbitrary, and
the concepts discussed in this article generalize to any
number of multilevel analysis problems. Nevertheless, we
felt that this research scenario was useful because it pro-
vides an intuitive platform from which to explore centering
issues.

The Level 1 regression equation for the illustrative model
is

WELLBEING;; = By; + B,,(HOURS,) + r;, (1)

where B, is the intercept for cluster j, 8, is the regression
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coefficient for cluster j, and Ty is the Level 1 residual.' In
turn, the Level 2 models for the intercept and slope are as
follows:

Bo/' = Yoo T Uy (2)

Blj: Yio t Uy 3)

The equations above express each cluster’s intercept and
slope as a function of the mean intercept and slope (v, and
Y10, respectively) plus a residual term that captures cluster
J’s deviation from the mean (u; and u,)).

In principle, each cluster has a unique slope and inter-
cept, but the MLM analysis summarizes the j regressions
by using a smaller set of parameters. Substituting Equa-
tions 2 and 3 into the Level 1 equation yields the so-
called combined model regression equation shown be-
low.

WELLBEING,; = voo + Y10(HOURS;,) + uq;
+ u,(HOURS;)) + ;. (4)

This basic model yields six parameter estimates: the mean
intercept and slope (y,, and <,y respectively), variance
estimates for uy; and uy; that quantify the heterogeneity in
the intercepts and slopes (7, and T, respectively), the
covariance between the intercepts and slopes (7,,), and the
Level 1 residual variance (o).

To facilitate the subsequent discussion, we generated a
small artificial data set that consisted of three clusters
(workgroups) and n; = 5 cases (employees) within each
cluster. A scatter plot displaying the raw data is given in the
top panel of Figure 1. The data were generated such that
work hours and well-being contained a considerable pro-
portion of between-cluster variation (i.e., mean differences
among clusters accounted for a significant portion of the
total score variation). The between-cluster variation in work
hours is evidenced by the spread of the clusters along the
horizontal axis, and the vertical separation of the clusters
reflects between-group variation in the well-being scores.
The mean differences in workload accounted for approxi-
mately 69% of the total score variation (i.e., the intraclass
correlation, or the proportion of the total variation that exists
at Level, 2 was Ty/[Toy + 0°] = .69), and differences
among well-being means accounted for 84% of the varia-
tion. These data do not represent a realistic application of
MLM because the number of clusters is very small, and the
intraclass correlation is larger than what one might typically
see with cross-sectional data. However, these characteristics
make the artificial data set useful for visually demonstrating
the effects of different forms of centering.

It may not be immediately obvious, but the total correla-
tion between workload and well-being has both a within-

(i.e., Level 1) and a between-cluster (i.e., Level 2) compo-
nent.”> Returning to the top panel in Figure 1, the scores
within each workgroup are negatively correlated, such that
individuals who work more tend to have lower well-being
scores. Additionally, the workload and well-being means
for each cluster can be viewed as Level 2 variables (Pac-
cagnella, 2006), the scatter plot for which is shown in the
bottom panel of Figure 1. As seen in the figure, the cluster
means are nearly perfectly correlated, such that the average
well-being score for a particular workgroup decreases as the
mean number of work hours increases. Figure 1 depicts an
association between workload and well-being at both levels
of the hierarchy, yet this complex relationship is summa-
rized with a single regression slope in Equation 4. This is
the crux of the centering issue in MLMs, and the goal of this
article is to demonstrate how CGM and CWC partition the
relationship between X and Y and produce different inter-
pretations of the MLM parameters.

Centering at the Grand Mean (CGM)

Under CGM, the Level 1 predictor (work hours) is devi-
ated around the grand mean (i.e., HOURS;; — Xyoyrs); for
simplicity, the grand mean-centered scores are henceforth
referred to as HOURS,.,,,,. Before considering the impact of
centering on MLM parameters, it is informative to see how
CGM affects the multilevel structure of the data. Applying
CGM to the small artificial data set produced the scatter plot
shown in the top panel of Figure 2. As seen in the figure, the
CGM scatter plot is identical to that of the raw data (see
Figure 1), except for the labeling of the workload values
along the horizontal axis. The fact that CGM does nothing
to the rank order of scores on either variable suggests that
the complex, multilevel association between work hours
and well-being is unaffected by grand mean centering.

To further illustrate the impact of CGM, the correlations
and cluster means from the artificial data are given in Table
1. As seen in the table, the magnitude of the mean differ-
ences on the workload variable is unaffected by CGM, and
the raw and centered workload scores possess the same
correlation with the well-being (r = —.86). More important,

' A brief explanation of the notation used in this article is
warranted. Like OLS regression, the values of explanatory vari-
ables in MLMs are assumed to be fixed as opposed to random. Our
notational scheme makes no distinction between fixed and random
variables, and we generically refer to any measured variable by
using uppercase, italic typeface. The realized values of a variable
are designated using lowercase, italic typeface (e.g., x; = 0).
Finally, all residual terms are denoted using lowercase, italic
typeface.

2 Interested readers are encouraged to consult Snijders and
Bosker (1999, p. 26) for an excellent discussion of within- and
between-cluster relationships.
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Figure 1. A: Scatter plot of the artificial data set. Cluster 1 cases

are denoted by open triangles, and Cluster 2 and 3 cases are
denoted by plus signs and open circles, respectively. A negative
correlation exists within each cluster, such that higher workload
scores are associated with lower well-being. B: Scatter plot of the
cluster means. A negative association exists among the means,
such that the average well-being score decreases as the mean
workload increases.

the table shows that HOURS,,,, is correlated with both
Level 1 and Level 2 variables (e.g., workgroup size; SIZE).
At first glance, it may appear strange that a Level 1 variable
is correlated with variables at both levels of the hierarchy.
However, the fact that the intraclass correlation is greater
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Figure 2. Scatter plot of artificial data under grand mean center-

ing (CGM) and within-cluster centering (CWC). Cluster 1 cases
are denoted by open triangles, and Cluster 2 and 3 cases are
denoted by plus signs and open circles, respectively.
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Table 1
Cluster Means and Correlations for the Artificial Data Under
Different Forms of Centering

Cluster M
Cluster WELLBEING HOURS,,, HOURS,.,, HOURS,.,.
1 72 40 -10 0
2 62 50 0 0
3 48 60 10 0
Data 1 2 3 4 5 6 7
1. WELLBEING —
2. HOURS,,,,, -.86 —
3. HOURS,.,, -.86 1.00 —
4. HOURS.,,,. -.22 .57 57 —
5. XtouUrs, —.90 .82 82 0 —
6. yWELLBE,NGj 9 -8 -8 0 -99 —
7. SIZE —.44 33 33 0 40 —48 —

Note. RAW = original metric; CGM = grand mean centered; CWC =
centered within cluster; WELLBEING = psychological well-being;
HOURS = workload measured in hours per week; SIZE = workgroup size.

than zero (and less than unity) implies that work hours (and
thus HOURS,.,,) can be viewed as a composite variable that
contains both within- and between-cluster variation (i.e.,
HOURS; — Xpours = [HOURS; — Xpours] + [Xuours;
—X gours] = within + between). The presence of variation
at both levels of the hierarchy leads to an important con-
clusion: CGM yields scores that are correlated with vari-
ables at both levels of the hierarchy. The preceding point is
vital for understanding the differences between CGM and
CWC, and we revisit it throughout the article.

How does CGM affect the interpretation of the MLM
parameters? The Level 1 regression equation under CGM is

WELLBEING;; = By; + Bi;(HOURS;; — Xyours) + 1. (5)

Equation 5 shows that the intercept for cluster j is the
predicted score for a case whose workload value is at the
grand mean (i.e., when HOURS; = Xyours, the predicted
WELLBEING score is 3;). Further insight into the defini-
tion of By; can be achieved by taking the expectation of
Equation 5 within each cluster (the expectation of WELL-
BEING,-]- and HOURSij is the cluster mean, and the expec-
tation of r;; is zero), and rearranging terms as follows:

Bo = MweLsevg — Blj( XHours; — Xtours)- (6)

Equation 6 shows that the Level 1 intercept is equal to the
well-being mean for cluster j, minus an adjustment that
depends on the regression slope, and on the deviation be-
tween the workload mean for cluster j and the grand mean.
Readers may recognize Equation 6 as the formula used to
obtain adjusted means in the analysis of covariance
(ANCOVA) context, and the Level 1 intercept can also be
interpreted as the adjusted mean for cluster j (i.e., the

expected well-being score for a case belonging to cluster j
after “equating” the clusters on their average workload). A
graphical depiction of the ANCOVA adjustment can be
found in intermediate statistics texts (e.g., Stevens, 1999, p.
311).

As discussed earlier, the MLM analysis ultimately yields
an estimate of the mean intercept, which was denoted as 7y,
in Equation 4. From the previous discussion, it follows that
this parameter is interpreted as the average adjusted mean.
Although the MM intercept has a straightforward interpre-
tation, the presence of between-cluster variation in the cen-
tered workload scores makes the interpretation of the CGM
slope coefficient more problematic. To illustrate, the top
panel of Figure 3 superimposes three regression lines over
the CGM scatter plot. Specifically, the dotted line represents
the regression of well-being on workload within each clus-
ter (i.e., the pooled within-cluster regression, 3,,). Next, the
solid line reflects the relationship between the cluster means
at Level 2 (i.e., the between-cluster regression, [3,); this
association was previously depicted in the bottom panel of
Figure 1. Finally, the dashed line represents the total regres-
sion line (3,) and can be thought of as the slope obtained
from an analysis that ignores the nesting of cases within
organizations (i.e., a disaggregated analysis).

When analyzing clustered data such as these using OLS
regression, the total regression coefficient is actually a
weighted combination of the within- and between-cluster
regression coefficients (Raudenbush & Bryk, 2002, p. 137).
This result is clearly evident in the top panel of Figure 3, in
which the total regression line (the dashed line) is flatter
than the between-cluster slope (the solid line) but is steeper
than the within-cluster regression (the dotted line). The
problem with an OLS analysis of clustered data is that it
incorrectly summarizes the complex association between X
and Y by using only a single parameter (B,). As a result, “B,
is generally an uninterpretable blend of 3, and ,” (Rau-
denbush & Bryk, 2002, p. 138).

Returning to the combined model notation in Equation 4,
the association between workload and well-being is also
represented by a single regression coefficient () that is
analogous to 3,. The presence of between-cluster variation
in the centered scores means that the CGM regression slope
is also a mixture of the within- and between-cluster associ-
ation between workload and well-being. Raudenbush and
Bryk (2002) made this point, stating that, “the hierarchical
estimator under grand-mean centering is an inappropriate
estimator of the person-level [i.e., Level 1] effect. It too is
an uninterpretable blend: neither 3,, nor 8,” (p. 139).

The use of CGM also affects the interpretation of the
MLM variance components. We have previously shown
that the intercept for cluster j is interpreted as an adjusted
mean, so it follows that the CGM estimate of the intercept
variance (T,,) quantifies variation in the adjusted outcome
means (i.e., the variation in the well-being means after
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Figure 3. Scatter plot of artificial data under grand mean center-
ing (CGM) and within-cluster centering (CWC). Ordinary least
squares regression lines are superimposed over the plot. In the top
panel (CGM), the dotted line represents the pooled within-cluster
regression (3,,), whereas the solid line is the between-cluster
regression of the well-being means on the workload means ([3,).
The dashed line is the total regression that ignores the clustering of
cases within organizations (§3,). In the bottom panel (CWC), the
workload scores contain no between-cluster variation, so 3, = 0,
and the total regression line quantifies the pooled within-cluster
regression coefficient.

partialling out the effect of workload). However, the CGM
estimate of the slope variance (7,,) is problematic and is
potentially biased toward zero. When the regression slopes
vary across clusters, a dependency is introduced between
the intercepts and slopes, because the magnitude of the
adjustment to each cluster’s mean (see Equation 6) depends
on the cluster-specific slope coefficient (3,;)—this is anal-
ogous to violating the homogeneity of regression assump-
tion in ANCOVA. This dependency serves to confound the
CGM estimates of the intercept and slope variance, making
the interpretation of these estimates somewhat ambiguous.

Understanding the resulting bias in the CGM slope vari-
ance estimate requires a brief tangent into the expectation
maximization (EM) algorithm, an iterative computational
algorithm used to obtain maximum likelihood parameter
estimates. The EM algorithm requires the computation of
empirical Bayes (EB) estimates of each cluster’s intercept
and slope, computed as a weighted sum of the OLS esti-
mates of 3,; and 3,; and the model-predicted values of the
intercept and slope (e.g., Yoo and v,o). When the range of X
values for cluster j does not include the grand mean, the
OLS estimate of the intercept is unreliable because the
adjustment term in Equation 6 involves extrapolation out-
side the range of observed X values. As a consequence, the
EB estimate of the intercept is more heavily weighted by a
constant model-predicted value, and the estimate of the
intercept variation becomes attenuated—this concept is re-
ferred to as shrinkage in the MLLM literature. Because CGM
induces a dependency between the intercepts and slopes, it
follows that the variation in the slopes is also artificially
compressed, resulting in a negatively biased estimate of the
slope variance (7).

Centering Within Cluster (CWC)

Under CWC, the Level 1 predictor (work hours) is devi-
ated around the mean of the cluster j to which case i belongs
(i.e., HOURS; — Xyours,); for simplicity, the group mean-
centered scores are henceforth referred to as HOURS.,,,,.
Again, it is informative to see how CWC affects the mul-
tilevel structure of the data before considering its impact on
MLM parameters. The bottom panel of Figure 2 shows a
CWC scatter plot that is radically different from that of
CGM. To illustrate, consider the data points labeled A and
B in the figure. Case A has the highest workload among the
Cluster 1 cases (denoted with a diamond), and Case B has
the lowest workload in Cluster 3 (denoted with a circle).
Furthermore, the top panel of Figure 2 shows that Case B
has a slightly higher workload score than Case A (this is
also true of the raw data, as seen in Figure 1). In contrast,
the relative position of these two cases changes rather
dramatically under CWC, such that Case A has the higher
workload score. The rank order change owes to the fact that
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workload scores are now expressed relative to other cases
belonging to the same cluster.

The descriptive statistics and correlations in Table 1 fur-
ther clarify the differences between CGM and CWC. Unlike
CGM, CWC fundamentally alters the mean and correlation
structure of the data. For example, note that the workload
cluster means are all zero under CWC; said differently,
HOURS.,,,. contains no between-cluster variation. The ab-
sence of between-cluster variation is seen graphically in the
bottom panel of Figure 2, in which the clusters are no longer
separated along the horizontal axis.

Removing the between-cluster variation in the workload
scores has important implications for the correlation struc-
ture. Specifically, notice that HOURS,,,,. is correlated with
Level 1 variables (e.g., well-being) but is uncorrelated with
Level 2 variables (e.g., workgroup size). Also, note that the
magnitude of the correlation between workload and well-
being is different under CGM and CWC. HOURS,,, is a
composite variable that contains variation at both levels of
the hierarchy, so it follows that the correlation between
HOURS,,,, and well-being is a blend of the within- and
between-cluster associations depicted in Figure 1. In con-
trast, the correlation between HOURS,.,,. and well-being is
much weaker (r = —.22 versus —.86) because it is unaf-
fected by the strong Level 2 association shown in the
bottom panel of Figure 1. The fact that CWC purges scores
of all between-cluster mean differences leads to a second
important conclusion: CWC produces scores that are uncor-
related with Level 2 variables. Again, the preceding point is
vital for understanding the differences between CGM and
CWC and is revisited throughout the remainder of the
article.

Having gained some intuition about CWC, we now ex-
amine its impact on the interpretation of MLM parameters.
The Level 1 regression equation under CWC is

WELLBEING,; = By, + Bi,(HOURS; — Xyours) + 1. (1)

Equation 7 shows that the intercept is the predicted score for
a case in which the workload value is at the cluster mean
(i.e., when HOURS;; = Xyours; the predicted WELLBEING
score is Boj). From OLS regression, we know that the mean
of Y is the predicted value associated with the mean of X, so
it follows that the Level 1 intercept is the unadjusted mean
for cluster j. By extension, the intercept parameter in the
combined model (yy, in Equation 4) is interpreted as the
average unadjusted cluster mean.

The use of CWC also changes the interpretation of the
MLM regression slope. The CGM slope coefficient is prob-
lematic because it is a mixture of the within- and between-
cluster association between X and Y. In contrast, CWC
removes all between-cluster variation from the predictor
variable and yields a slope coefficient (i.e., the vy, coeffi-
cient in Equation 4) that is unambiguously interpreted as the

pooled within-cluster (i.e., Level 1) regression of well-being
on workload. This can be seen graphically in the bottom
panel of Figure 3, in which the total regression line (the
dashed line) is approximately equal to the pooled within-
cluster regressions (the dotted lines).

The use of CWC also affects the interpretation of the
variance components. Because the Level 1 intercept is an
unadjusted mean, it follows that the intercept variance (7)
quantifies the between-cluster variation in the outcome
scores, or the variance of the unadjusted cluster means. As
such, the estimate of 7, obtained from CWC should be
nearly identical to that obtained from an unconditional
model with no predictors. We previously pointed out that
the CGM estimate of the slope variance is potentially biased
because of a dependency on intercepts that were subject to
shrinkage. The same is not true of CWC, so the resulting
estimate of the slope variation is generally more accurate
(Raudenbush & Bryk, 2002).

The Linkage Between Centering and
Substantive Questions

Thus far, we have established that the interpretation of
MLM parameters is fundamentally different under CGM
and CWC. To briefly summarize, CGM produced an inter-
cept value that was interpreted as the average adjusted
mean, whereas the CWC intercept value was the average
unadjusted mean. The centered scores under CGM con-
tained both within- and between-cluster variation, resulting
in a regression slope that was an ambiguous mixture of the
Level 1 (e.g., person level) and Level 2 (e.g., organization
level) association between X and Y. In contrast, centered
scores under CWC were uncorrelated with Level 2 vari-
ables, so the resulting regression coefficient was a pure
estimate of the Level 1 relationship between X and Y. The
choice of centering also affected the interpretation of the
variance components. The CGM estimate of the intercept
variance quantified variation in the adjusted means (i.e.,
variation in the outcome means, having controlled for the
Level 1 predictor), whereas the CWC variance estimate
captured variation in the unadjusted means. We also dis-
cussed the differences in the estimates of the slope variation
and pointed out potential problems associated with the
CGM estimate of the slope variance.

From the previous discussion, one might reasonably con-
clude that the use of CGM is problematic and should be
avoided. However, this is far from true. It is our view that
the choice of centering method is intimately linked to one’s
substantive research questions, and both CGM and CWC
are appropriate in certain circumstances and are inappropri-
ate in others. It is generally true that a particular research
question calls for either CGM or CWC, but it is also true
that CGM and CWC may be used to address different
questions within the same study.
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Given the linkage between centering and one’s substan-
tive question, we further explore the differences between
CGM and CWC in the context of some prototypical re-
search questions that may be of interest to researchers who
use MLM. In doing so, we hope to provide a few straight-
forward rules of thumb for centering Level 1 predictors. For
this purpose, we classify substantive research questions into
four broad scenarios: (a) the primary substantive interest
involves a Level 1 predictor (e.g., What is the impact of an
individual’s workload on his or her well-being?), (b) the
primary substantive interest involves the influence of a
Level 2 predictor (e.g., What is the impact of company size
on well-being?), (c) it is of interest to determine whether a
predictor exerts the same influence at the individual and
cluster level (i.e., Is the influence of an individual’s work-
load on well-being the same as the influence of a company’s
average workload on well-being?), and (d) it is of interest to
examine interaction effects (e.g., Does company size mod-
erate the relationship between individual workload and
well-being?). These four categories are obviously not ex-
haustive and do not capture every research question that
MLMs are capable of addressing. Nevertheless, we believe
that these scenarios are inclusive of many substantive ap-
plications of MLM found in the behavioral science litera-
ture. Again, it is important to emphasize that different forms
of centering may be required to address research questions
within the same study, so the centering recommendations
below should not be viewed as mutually exclusive deci-
sions.

A Level 1 Predictor Is of Substantive Interest

CWC may be the most appropriate form of centering in
situations in which the primary substantive interest involves
a Level 1 (i.e., person level) predictor. The rationale for this
suggestion follows from the fact that CWC removes all
between-cluster variation from the predictor and yields a
“pure” estimate of the pooled within-cluster (i.e., Level 1)
regression coefficient. Raudenbush and Bryk (2002) sum-
marized this situation, stating that “when an unbiased esti-
mate of B,, [i.e., the Level 1 relationship] is desired, group-
mean centering [i.e., CWC] will produce it” (p. 139). The
use of CWC is also beneficial in this situation because it
yields a more accurate estimate of the slope variance.
Again, Raudenbush and Bryk (2002) suggested the use of
CWC for this purpose, stating that “we recommend group-
mean centering [CWC] to detect and estimate properly the
slope heterogeneity” (p. 143).

The substantive focus on a Level 1 predictor and the
subsequent use of CWC implies that an individual’s relative
position within a group is an important determinant of his or
her behavior (i.e., the frog pond effect; Davis, 1966). For
example, it has been hypothesized that academic self-con-
cept is influenced by one’s immediate peers, such that a

student may feel less efficacious when surrounded by high-
achieving peers (Marsh & Hau, 1987, 2003). Per the occu-
pational stress example, researchers have posited that strain
may result when an individual’s workload is high relative to
others in their immediate workgroup because of perceptions
of unfairness (Bliese & Jex, 2002). In situations such as
these, it is natural to conceive of the multilevel analysis as
a two-step procedure, whereby separate models are first fit
to each organization’s data, and the resulting regression
coefficients are subsequently aggregated in order to obtain
an estimate of the pooled within-cluster slope. This type of
substantive focus naturally lends itself to CWC (Kreft et al.,
1995).

A Level 2 Predictor Is of Substantive Interest

In this scenario, the primary substantive focus is on a
Level 2 (i.e., cluster level) predictor variable (e.g., What is
the impact of company size on well-being?). The cluster-
level variable of interest may be an aggregate of the indi-
vidual scores within each cluster (e.g., average work hours)
or may contain no systematic variation at the individual
level (e.g., company size); Susser (1994) referred to these as
contextual and integral variables, respectively. At one ex-
treme, there may no Level 1 predictors in the model, so the
centering of Level 2 variables would simply follow the
prescribed practice in the OLS literature (e.g., Aiken &
West, 1991). However, it is probably more typically the
case that both Level 1 and Level 2 variables are included in
the model, in which case the Level 1 (e.g., person level)
predictors might be viewed as nuisance variables that need
to be controlled for. A prototypical example of this type of
application is a cluster randomized study where Level 2
units (e.g., organizations, schools) are assigned to partici-
pate in either the treatment or control condition. In this case
it would be of interest to assess the treatment effect (e.g., a
Level 2 dummy variable), controlling for individual differ-
ences on a number of Level 1 covariates. We subsequently
demonstrate that CGM is ideally suited for this situation.

Returning to the occupational stress scenario, suppose
that it was of interest to examine the influence of group size
(SIZE) on psychological well-being, controlling for individ-
ual differences in workload. Although we have not yet
discussed models with Level 2 predictors, CGM is the
method of choice for assessing the impact of cluster-level
variables, controlling for Level 1 covariates. To understand
why this is so, we examine the combined model regression
equation that results from adding workgroup size to the
model, as follows:

WELLBEING,; = oo + Yo, (SIZE))
+ v,0(HOURS,,,,) + [residuals]. (8)

For simplicity, the collection of residual terms from Equa-
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tion 4 has been omitted and has been replaced by a single
term in brackets. Because the Level 1 predictor, HOURS,.,,,,,
is a composite of within- and between-cluster variation, it is
correlated with the Level 2 predictor, SIZE. As such, v, is
a partial regression coefficient that reflects the influence of
group size, controlling for workload. It is still true that the
regression coefficient associated with workload (7y,,) is an
ambiguous mixture of the Level 1 and Level 2 association
between workload and well-being, but this is less of a
concern, given that the substantive focus is on the Level 2
covariate and its corresponding regression coefficient (‘yy;).

It is important to note that CWC does not control for
the effects of Level 1 covariates and thus would be
inappropriate in this scenario. This conclusion can be
reached by substituting HOURS.,.,,. into Equation 8 in place
of HOURS,,,,. Level 1 predictors that are centered at the
group mean are uncorrelated with Level 2 variables, so the
use of CWC in this situation would result in two orthogonal
predictors, and the influence of SIZE would be evaluated,
independent of work hours. In fact, the regression slope for
workgroup size would be the same regardless of whether
HOURS.,,,. was even in the model.

To illustrate the concepts presented thus far, we generated
an artificial data set with 300 clusters of 40 cases each. The
data were roughly consistent with Figure 1, such that the
Level 2 association between workload and well-being was
stronger than that at Level 1; both variables had an intra-
class correlation of approximately .50. Additionally, the
Level 2 variable SIZE was negatively correlated with well-
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being and accounted for a significant proportion of the
variation in well-being scores, above and beyond that of
workload. Consistent with recommendations from the OLS
regression literature, the Level 2 predictor was centered at
the grand mean. All models were estimated by using full
maximum likelihood, and the analyses were performed with
the mixed procedure in SPSS 14 (Peugh & Enders, 2005).
The artificial data and SPSS syntax for the example analyses
are available from the authors and can also be obtained
online.

We first estimated an unconditional model with no pre-
dictors at either level of the hierarchy, the results from
which are given in Table 2. As seen in the table, the
intercept value was vy,, = 60.07, and the intercept variance
estimate was Ty, = 47.36.

The next section in Table 2 gives the results from two
models, one of which included HOURS,,,, as a predictor
and the other of which included HOURS,.,. First, notice
that the CGM regression coefficient was slightly larger in
absolute value than that of CWC (y,, = —.31 vs. —.29,
respectively). Recall from a previous discussion that CWC
is preferred when the substantive focus involves a Level 1
variable, because the v,, coefficient is an unbiased estimate
of the within-cluster regression. In contrast, the correspond-
ing CGM coefficient is a blend of the Level 1 and Level 2
regressions. The fact that the CGM coefficient was some-
what larger than that of CWC is expected in this case, given
that the association between workload and well-being was
stronger at Level 2 (i.e., the CGM coefficient is getting

Table 2
Parameter Estimates (PEs) From Example Analysis 1
CGM CWC
Model PE SE t PE SE t

WELLBEING,; = oo + Uy + 1 Yoo 60.074 403 149.25
Too 47.355 3.969 11.93
a? 49.956 .653 76.49

WELLBEING,; = Yoo + ¥1o(HOURS,) + uy; Yoo 59.927 353 169.97 60.074 403 149.25

+ u, (HOURS,) + r; Y10 —.306 012 —24.54 —.295 013 —23.06

Too 35.762 3.064 11.67 47.492 3.969 11.97
Ty .024 .004 6.23 .025 .004 6.31
T1o —.593 .084 =7.01 —.606 .095 —6.36
a? 44.474 .589 75.54 44.469 .589 75.51
Yoo 59.878 337 177.46 60.074 398 150.93

WELLBEING; = Yoo + Y01(SIZE)) + v,o(HOURS;)) Yo —.165 .029 —5.63 —.096 .036 —2.64

+ uo; + u, (HOURS;)) + r; Y10 —.311 012 —25.00 —.295 .013 —23.06

Too 32.624 2.821 11.57 46.418 3.881 11.96
T .023 .004 6.20 .025 .004 6.31
Tio —.581 .081 —=7.17 —.601 .094 —6.37
a? 44.486 .589 75.54 44.468 .589 75.51

Note.

All significance tests were significant at p < .01. Significance tests for variance components are Wald z tests. All residual terms were generated

to have a normal distribution. Results from the unconditional model were arbitrarily listed under CGM, although no predictors were in the model. As a result
of rounding error in the tabled values, some test statistics do not equal the estimate divided by the standard error. CGM = centering at the grand mean;
CWC = centering within cluster; WELLBEING = psychological well-being; HOURS = workload measured in hours per week; SIZE = workgroup size.
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“pulled” toward the Level 2 regression line). Second, note
that the CWC estimate of the intercept variance was virtu-
ally identical to that obtained from the unconditional model,
which follows from the definition of B, as an unadjusted
mean. In contrast, the CGM estimate of 7, was substan-
tially lower and reflects the variation in the adjusted out-
come means (i.e., the variation in the well-being means,
having partialled out the effect of workload). The 7, term
is the covariance between the intercepts and slopes, and
differs in value due to the fact that CGM and CWC have
different definitions of ;.

The final two models in Table 2 include both workload (a
Level 1 variable) and group size (a Level 2 variable) as
covariates. First, notice that the CWC estimate of the work-
load regression coefficient was unaffected by the inclusion
of group size and follows from the fact that HOURS,,,,. is
orthogonal to Level 2 variables. As such, the CWC regres-
sion coefficients reflect the independent influence of work-
load and group size as Level 1 and Level 2 predictors,
respectively (i.e., workload is not partialled out when con-
sidering the influence of group size). Under CWC, the vy,
regression coefficient still provides an unbiased estimate of
the within-cluster regression, but the model now yields an
estimate of the regression of yyp;1pevg, on SIZE. In con-
trast, the CGM estimate of the workload regression coeffi-
cient changed slightly when group size was added to the
model because HOURS,.,,, is correlated with both Level 1
and Level 2 variables. In this situation, the v,, regression
coefficient quantifies the influence of SIZE, controlling for
individual workload. The v,, regression coefficient still
gives a distorted view of the Level 1 regression of well-
being on workload, but this is not a concern if the substan-
tive focus is on the Level 2 covariate and the vy, coefficient.

It Is of Interest to Examine a Predictor’s Influence
at Two Levels

In certain situations it may be of interest to determine
whether the association between X and Y is the same at both
levels of the hierarchy. That is, it is of interest to determine
whether the person-level regression of Y on X is the same as
the Level 2 regression of y; on X;. These models have been
referred to as contextual, or compositional, models in the
MLM literature, and are frequently of interest in education
and sociology (Blalock, 1984; Raudenbush, 1989b; Rauden-
bush & Bryk, 2002). Per the occupational stress example,
the differential impact of a predictor at two levels can be
seen graphically in the top panel of Figure 3, in which the
organization-level effect of workload is much stronger, or
has a steeper slope, than the corresponding person-level
effect; the dotted regression line represents the pooled with-
in-cluster regression of well-being on work hours (i.e., the
person-level effect) and the solid line represents the regres-

sion of the well-being means on the workload means (i.e.,
the cluster-level effect).

In order to test whether a predictor has a differential effect
at both levels of the hierarchy, we must use the individual
scores and the cluster means as predictors in the model.
Despite the fact that the Level 2 predictor is an aggregate of
the individual scores within each cluster, it is not necessarily
true that X and x share the same meaning or that they
measure the same construct (Firebaugh, 1978). For exam-
ple, in the occupational stress literature, it has been argued
that the average work hours within a workgroup may be
dictated by externally mandated work requirements,
whereas an individual’s workload may be driven by a desire
to get ahead, a desire to avoid one’s family, etc. (Bliese,
2000; Bliese & Halverson, 1996). A similar distinction has
been made between X and X in the public health literature,
in which individual and aggregated neighborhood poverty
may exert different, independent effects on health outcomes
(Schwartz, 1994). We include these two examples in order
to highlight the complexities associated with interpreting a
Level 2 variable that is an aggregate of individual scores. A
more thorough discussion of this issue can be found in a
number of different sources (Bliese & Jex, 2002; Chan,
1998; Firebaugh, 1978; Willms, 1986).

Contextual models have a long history in education and
sociology, but the interest in X as a predictor at two levels
also has potential applications in psychology. For example,
suppose that it was of interest to examine the influence of
anxiety on pain perception. Furthermore, suppose that mul-
tiple measurements of both variables were obtained from
hospitalized individuals at a number of random intervals
throughout the course of a week. This is a somewhat dif-
ferent application from the one we have been using through-
out this article, as repeated measurements (i.e., Level 1) are
now nested within individuals (i.e., Level 2). Regardless, it
is possible to ask whether there is a differential association
between anxiety and perceived pain at Level 1 and at Level
2. The Level 1 association between anxiety and pain ad-
dresses whether, for any given person, perceived pain is
high when anxiety is high (i.e., How do state-like fluctua-
tions in anxiety influence pain ratings?). In contrast, the
Level 2 relationship asks whether individuals with high
average anxiety scores also have high pain ratings (i.e., How
is trait-like variation in anxiety related to perceived pain?).
The preceding example is inconsistent with the traditional
definition of a contextual model, but it is important to point
out that the models described in this section have applica-
tions in psychology. We now return to the occupational
stress example for the remainder of this section.

In situations in which it is of interest to determine whether
the association between X and Y is the same at both levels
of the hierarchy, it is necessary to decompose the predictor
into a within- and a between-level component. This is
accomplished by using the cluster means, Xyoygs, as a
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predictor in the Level 2 intercept equation. Under CGM, the
combined model equation becomes

WELLBEIN Gij = Yoo T 'YOI(?_CHOURS/)
+ v10(HOURS,,,,) + [residuals], (9)

and the corresponding CWC model is

WELLBEIN Gij = Yoo T 701(3_CH0URS/)
+ ~v,0(HOURS.,,,.) + [residuals]. (10)

Equations 9 and 10 are interesting because they represent
one of the few situations in which CGM and CWC produce
equivalent parameter estimates (Kreft et al., 1995), so either
form of centering is appropriate. In this context, equivalence
means that the parameter estimates from CGM can be
algebraically equated with those of CWC, even though the
actual values of the two sets of coefficients differ.

The fact that both CGM and CWC can be used to test
whether a differential association exists between X and Y at
Level 1 and Level 2 stems from the following algebraic

CWC

relationship given by Kreft et al. (1995): v¢i™= vor
= v10¢. The equivalence of these parameters can be under-
stood by examining the regression coefficients in Equations
9 and 10. Level 1 predictors that are centered at the group
mean are uncorrelated with Level 2 variables, so the CWC
model in Equation 10 is comprised of two orthogonal pre-
dictors, and vy,, and 1y,; quantify the independent associa-
tion between workload and well-being at Level 1 and Level
2, respectively. In order to determine whether a differential
association exists between X and Y at the two levels of the
hierarchy (i.e., a contextual effect exists), it is necessary to
test whether the two coefficients are statistically different
from one another. In contrast, the predictor variables in the
CGM model shown in Equation 9 are highly correlated
(because HOURS,,,, is, in part, comprised of X ys,), SO the
v coefficients are partial regression slopes that quantify the
effect of workload at one level, controlling for the influence
of workload at the other level. In this situation, a differential
relationship between X and Y at the two levels would be
evident if the cluster means are associated with Y, after
controlling for the effect of X at Level 1. Said differently, if
the magnitude of the association between X and Y is iden-
tical at both levels, then the cluster means would provide no
additional explanatory power, and <y, would equal zero.
Most multilevel software packages allow the user to specify
custom contrasts, so testing the difference between the
Level 1 and Level 2 regression slopes is straightforward
under CWC. Nevertheless, the use of CGM is arguably
easier in this context, given that the user need only examine
the significance test for y,,.

Kreft et al. (1995) also illustrated that CGM and CWC
yield identical estimates of the Level 1 association between
X and Y, such that vy{§" = ~i5°. At first glance, this

algebraic relationship appears to be inconsistent with the
earlier conclusion that CGM yields a biased estimate of the
Level 1 regression. However, adding the cluster means as a
predictor in Equation 9 serves to partial out the Level 2
influence of workload, resulting in an unbiased estimate of
the relationship between individual workload and well-
being.

Finally, Kreft et al. (1995) noted that the CGM and CWC
intercepts can be algebraically equated such that ygg"
—vi5"X = Yoo - It is worth noting that the CGM and CWC
regression coefficients in Equations 9 and 10 are equivalent
regardless of how one chooses to model the random effects.
However, CGM and CWC variance components are only
equivalent when the intercepts, but not the slopes, randomly
vary across clusters. The equivalence of contextual model
parameters was explored in detail by Kreft et al. (1995), so
readers who are interested in a more rigorous treatment of
this topic are encouraged to consult their earlier work.?

The second set of illustrative analyses involved the mod-
els from Equations 9 and 10, and used the artificial data set
described in the previous example. Parameter estimates
from these analyses are given in Table 3.

We have previously shown that both CGM and CWC can
be used to test whether a differential association exists
between X and Y at Level 1 and at Level 2. Under CWC, vy,
and v,, quantify the independent association between work-
load and well-being at Level 1 and Level 2, respectively, so
the primary focus of this analysis involves testing whether
Yio = Yoi- As shown in Table 3, the difference between vy,
and y,; was approximately —.314, and a custom hypothesis
test indicated that this difference was statistically different
from zero (r = —7.39, p < .01). Under CGM, the v,
regression coefficient quantifies the additional explanatory
power of the cluster means, controlling for influence of
workload at Level 1, so the primary focus of the CGM
analysis involves testing whether v, differs from zero; as
shown in Table 3, the vy, coefficient was —.315, and was
statistically significant. Notice that the CGM estimate of vy,
was nearly identical to the difference between vy,, and vy,
under CWC and follows from the fact that the CGM and
CWC models shown in Equations 9 and 10 are equivalent
(Kreft et al., 1995).

Two additional points should be made about the param-
eter estimates in Table 3. First, notice that both models
produced the same estimate of the Level 1 association
between workload and well-being—this follows from Kreft
et al. (1995). As noted previously, the inclusion of the
cluster means in the CGM model serves to partial out the

3 Because of a lack of precision in the estimation process, the
algebraic identities outlined by Kreft et al. (1995) may not hold
exactly when substituting the estimated parameter values into the
equations outlined in this section.
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Table 3
Parameter Estimates (PEs) From Example Analysis 2
CGM CwC
Model PE SE t PE SE t
WELLBEING; = Yoo + Yo1(Frours) + Y1o(HOURS,)) Yoo 60.064 332 180.77 60.074 .320 187.90
+ ug; + u {HOURS;) + r; You —.315 .043 —17.30 —.608 .040 —15.04
Y10 —.294 .013 —23.44 —.294 .013 —22.99
Too 31.475 2.701 11.65 29.552 2.504 75.52
T .024 .004 6.21 .025 .004 6.34
Tio —.584 .080 —7.28 —.595 .079 —17.58
o’ 44.465 .589 75.55 44.464 .589 75.52

Note.

All significance tests were significant at p < .01. Significance tests for variance components are Wald z tests. All residual terms were generated

to have a normal distribution. As a result of rounding error in the tabled values, some test statistics do not equal the estimate divided by the standard error.
CGM = centering at the grand mean; CWC = centering within cluster; WELLBEING = psychological well-being; HOURS = workload measured in hours

per week.

between-cluster variation in workload, resulting in an unbi-
ased estimate of the Level 1 regression slope. Finally, note
that the CGM and CWC estimates of the intercept variance
(T9p) Were quite similar in these two models. Recall from an
earlier discussion that the CGM estimate of T, quantifies
variation in the well-being means after adjusting for mean
differences in workload. The addition of X, g, to the CWC
model effectively removed the between-cluster variation in
well-being that was attributable to workload, so the CGM
and CWC estimates of 7,, now have the same interpretation.

An Interaction Effect Is of Substantive Interest

Given the important role that centering plays in OLS
regression models with interaction terms (Aiken & West,
1991), this issue has received surprisingly little attention in
the MLM literature—popular MLM textbooks are virtually
devoid of the topic. Hofmann and Gavin (1998) under-
scored the importance of this issue, stating that “When
moving to models that include cross-level interactions, the
differences between grand mean and group mean centering
become even more critical” (p. 631).

MLM analyses allow for the estimation of within-level and
cross-level interactions. We focus primarily on cross-level
interactions in this section, briefly addressing within-level in-
teractions as well. A cross-level interaction occurs when a
Level 2 variable moderates the magnitude of a Level 1 rela-
tionship. Returning to the occupational stress example, sup-
pose that group size (an organization-level variable) moderated
the relationship between workload and well-being (the person-
level regression), such that the association between workload
and well-being was weaker in small workgroups. A cross-level
interaction effect is modeled by adding a Level 2 covariate to
the slope formula shown in Equation 3. Under CGM, the
combined model regression equation is as follows:

WELLBEING;; = oo + Y0,(SIZE;) + y,((HOURS,,,,)
+ v, (SIZE;)(HOURS,

om) T [residuals] (11)

Again, the collection of residual terms from Equation 4 is
represented by a single term in brackets. The vy, regression
coefficient is of particular interest in this context because it
quantifies the moderating influence that the group size has
on magnitude of the Level 1 association between workload
and well-being.

The impact of centering on cross-level interactions was
raised in a classic article by Cronbach and Webb (1975) that
reexamined an Aptitude X Treatment interaction (ATI) in a
study of mathematics achievement. A previous analysis had
incorrectly concluded that an ATI was present, when this
effect was actually due to an interaction at the classroom
level (i.e., Level 2). Specifically, the association between
the aptitude and achievement means differed for treatment
and control classrooms, but a failure to separate out the
within-level (i.e., individual) and between-level (i.e., class-
room) relationship between X and Y led to the incorrect
conclusion concerning the ATI. Cronbach and Webb hy-
pothesized that a true ATI would be evidenced by a cross-
level interaction, such that the within-class (i.e., Level 1)
relationship between aptitude and achievement would be
attenuated by participation in the treatment (i.e., a Level 2
variable). However, appropriately disentangling the within-
and between-cluster relationship revealed no such effect.

Hofmann and Gavin (1998) noted a problem similar to
that of Cronbach and Webb (1975) and used artificial data to
demonstrate that CGM can produce a significant cross-level
interaction effect, when no such effect exists in the popu-
lation. Again, the problem with CGM stems from the fact
that HOURS.,.,,, is a composite of within- and between-
cluster variation. This idea makes it possible to express the
cross-level interaction using the following formula:
¥1,(SIZE;)(HOURS,,i1pin + HOURS,,1e0,). With some ad-
ditional algebra, the formula becomes v, ,(SIZE) X
(HOURS, ;i) + Y1:(SIZE))(HOURS,,,,,...,)- The previous
expression illustrates the important point that vy, is poten-
tially influenced by two qualitatively different interaction
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effects: the interaction between SIZE and the Level 1 vari-
ation in workload scores and the Level 2 interaction be-
tween SIZE and the workload means. As such, the CGM
estimate of <y, suffers from the same problem that was
encountered when estimating the person-level association
between X and Y, namely that it is an uninterpretable mix-
ture of two different influences on the outcome.

Now reconsider the previous conceptual formula after
substituting HOURS..,,,. in place of HOURS,,,,,. Group mean
centering removes all between-cluster variation in X, so the
formula simplifies to y,,(SIZE;)(HOURS,,;,;..,). At a concep-
tual level, CWC yields a pure estimate of the moderating
influence that a Level 2 predictor exerts on the Level 1
association between X and Y and cannot be distorted by the
presence of an interaction that involves the cluster means of
X. It is for this reason that Hofmann and Gavin (1998) and
Raudenbush (1989a, 1989b) recommended using CWC
when cross-level interactions are of substantive interest.

The potential confounding that occurs under CGM also
implies that CWC is appropriate when the substantive focus
involves an interaction between a pair of Level 1 variables.
At a conceptual level, a cross-level interaction and an in-
teraction involving a pair of Level 1 variables both require
an accurate estimate of the Level 1 slope because this
coefficient is being moderated by another predictor. The
need for an unbiased estimate of the Level 1 association
makes CWC a natural choice for examining these types of
interaction effects.

Although the model in Equation 11 does lead to the
possibility of a spurious cross-level interaction effect (Hof-
mann & Gavin, 1998), it ends up that both CGM and CWC
can be used to appropriately distinguish a cross-level inter-
action from an interaction involving the Level 2 moderator
and the cluster means (i.e., the two interaction terms that are
confounded in Equation 11). Returning to the occupational
stress example, we consider the following combined model
equation:

Yi= "ot Vm()_CHOUst) + Yoz(SIZE/) + 703()_CHOURS,)(SIZE,')
+ v10(HOURS;)) + v,,(HOURS;)(SIZE,) + [residuals]. (12)

The model outlined above includes a main effect for the
Level 1 predictor (i.e., v,), main effects for the Level 2
predictor and the cluster means of the Level 1 predictor (i.e.,
Yoo and <y,,, respectively), a cross-level interaction (i.e.,
Y11), and an interaction involving the Level 2 predictor and
the cluster means (i.e., yy3). The notation in Equation 12 is
somewhat generic because either HOURS,,,,, or HOURS,.,,.
can be used in place of HOURS,;. The collection of residual
terms in the bracket is identical to that in Equation 4.

It is interesting to note that the model in Equation 12
represents another special case in which CGM and CWC
yield equivalent parameter estimates; as before, equivalence

means that the parameters in the CGM model can be alge-
braically equated to those in the CWC model. In the interest
of space, the analytic details related to model equivalence
are given in Appendix A, and we instead focus on the
substantive interpretation of the interaction coefficients un-
der CGM and CWC. The interpretation of Equation 12
relies on two previously established points: CGM yields
Level 1 scores that are correlated with both Level 1 and
Level 2 variables, whereas CWC yields Level 1 scores that
are orthogonal to all Level 2 variables. Because HOURS,.,,.
and Xxyougs, are orthogonal, it follows that the y;; and vy
coefficients reflect the independent influence of the cross-
level interaction and the interaction involving SIZE and
the workload cluster means, respectively. In contrast,
HOURS,.,,, and Xyours, are correlated, so 5 is interpreted
as the unique influence of the interaction involving SIZE
and the cluster means, above and beyond that of the cross-
level interaction (i.e., the effect of the Level 2 interaction,
having partialled out the cross-level interaction). Because
the CGM interaction effects are interpreted as partial regres-
sion coefficients, it also follows that vy, is a pure estimate
of the cross-level interaction, and is no longer confounded
with the Level 2 interaction, because it has been appropri-
ately partialled out. In fact, the analytic details given in
Appendix A demonstrate that CGM and CWC yield iden-
tical estimates of the cross-level interaction in this case.

It is unclear whether the two interaction effects actually
occur simultaneously in practice, but the model outlined in
Equation 12 allows one to appropriately disentangle the two
effects by using either CGM or CWC. The model in Equa-
tion 12 is also interesting because it is a second case in
which CGM and CWC yield equivalent regression coeffi-
cients; CGM and CWC also yield equivalent estimates of
the contextual model parameters in Equations 9 and 10
(Kreft et al., 1995). The equivalence of CGM and CWC has
not been widely studied, so it is unclear whether more
general conditions of equivalence can be established.

To illustrate the effect of centering on interaction effects,
we again generated an artificial data set with 300 clusters of
40 cases each. The data were generated such that the out-
come variable scores were a function of the Level 2 inter-
action involving SIZE and X0 ygs,, and all other terms in the
model were set to zero.

We began by estimating a standard cross-level interaction
model such as that given in Equation 11. As seen in Table
4, CGM produced a significant cross-level interaction, even
though no such effect existed in the data. This finding is
similar to that reported by Hofmann and Gavin (1998) and
demonstrates the pitfalls associated with using CGM to
investigate cross-level interaction effects. In contrast, CWC
appropriately disentangled the two interaction effects and
produced a nonsignificant cross-level interaction.

The interaction model proposed in Equation 12 was used
for the second analysis and was estimated by using both
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Table 4
Parameter Estimates (PEs) From Example Analysis 3
CGM CwC
Model PE SE t PE SE t
WELLBEING; = oo + Yoi(SIZE)) + v,o(HOURS) + Yoo 59.394 0.403 147.34 59.389 0.415 143.12
Y11 (HOURS))(SIZE)) + uy; + uy; (HOURS,) + ry You —0.028 0.040 —0.70 —0.022 0.041 0.55
Y10 0.013 0.010 1.25 0.012 0.010 1.17
Y11 0.003 0.001 3.02 0.001 0.001 0.97
Too 48.818 0.647 75.51 50.433 4.217 11.96
Ty 0.007 0.003 2.61 0.007 0.003 2.56
Tio 0.094 0.071 1.33 0.052 0.075 0.69
o’ 48.818 0.647 75.51 48.788 0.646 75.50
WELLBEING,; = voo + yOI(IcHOURSj) + Yoo (SIZE)) Yoo 59.967 0.274 218.76 59.976 0.274 219.12
+ y03()_cHOURSI)(SIZEj) + v,0(HOURS,) Yo1 0.037 0.039 0.96 0.049 0.038 1.31
+ v (HOURS)(SIZE)) + uy; + u, (HOURS;) + r; Yoz —0.022 0.027 —0.81 —0.023 0.027 —0.84
Yo3 0.069 0.004 18.89 0.070 0.003 19.99
Y10 0.012 0.010 1.19 0.012 0.010 1.18
Y11 0.001 0.001 0.98 0.001 0.001 0.97
Too 20.834 1.818 11.46 20.996 1.814 11.57
T 0.005 0.002 2.16 0.007 0.003 2.55
Tio 0.093 0.047 1.99 0.072 0.049 1.45
a? 48.859 0.647 75.48 48.790 0.646 75.50

Note.

Bold typeface denotes statistical significance at p < .05. Significance tests for variance components are Wald z tests. All residual terms were

generated to have a normal distribution. As a result of rounding error in the tabled values, some test statistics do not equal the estimate divided by the
standard error. CGM = centering at the grand mean; CWC = centering within cluster; WELLBEING = psychological well-being; SIZE = workgroup size;

HOURS = workload measured in hours per week.

CGM and CWC. Most important, the two interaction effects
were appropriately disentangled, such that the cross-level
interaction was nonsignificant, and the Level 2 interaction
involving SIZE and Xyoygs, Was statistically signiﬁcant.4 As
outlined in Appendix A, CGM and CWC now yield iden-
tical estimates of the cross-level interaction. More gener-
ally, the parameter estimates given in the bottom portion of
Table 4 are consistent with the algebraic identities given in
Appendix A (e.g., vo§" = vos. — viI© = .069 = .070-
.001). Although the two sets of estimates are algebraically
equivalent in this situation, we believe that the CWC model
is more useful, as it leads to a more natural interpretation of
the two interaction effects (i.e., the interaction coefficients
are independent under CWC, whereas the CGM coefficients
reflect the influence of one interaction, partialling out the
other).

Centering Binary Level 1 Predictors

Having established some centering recommendations for
continuous Level 1 predictors, we now briefly discuss issues
of centering with binary predictors (e.g., gender). Although
it may seem unnatural to center nominal predictors, the
previous concepts also extend to dummy and effect code
variables that appear in the Level 1 model. We provide a
nontechnical discussion of centering in this section, but a
more detailed algebraic presentation is given in Appendix B.

First, consider a Level 1 dummy variable (i.e., X; = 0,1)
with n; cases in the base group (i.e., x; = 0) and ny; cases
in the comparison group (i.e., x; = 1). Returning to the
occupational stress example, suppose that it was of interest
to include a dummy code for gender in the Level 1 model.
In this situation, the Level 1 intercept (i.e., By;) would be
interpreted as the male mean in cluster j (i.e., the expected
value when FEMALE = 0), and 7y, would quantify the
variation in the male averages across the j clusters. Alter-
natively, gender could be represented as an effect code
variable (i.e., male = —1, female = 1), in which case B,
would be interpreted as the unweighted mean of Y in cluster
J» and Ty, would quantify the variation in the unweighted
means. The interpretation of the Level 1 intercept in the
previous two examples is consistent with the interpretation
of dummy and effect codes in OLS regression (Cohen,
Cohen, West, & Aiken, 2003).

Centering a dummy variable around the grand mean fun-
damentally changes the interpretation of the MLM intercept
but does so in a way that is consistent with the continuous
case. Specifically, CGM yields a Level 1 intercept that is

4 CGM does not yield a direct significance test of the Level 2
interaction involving SIZE and Xyougs. Rather, the CGM coeffi-
cient quantifies the difference between the Level 2 and cross-level
interactions.
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interpreted as the adjusted outcome mean for cluster j. In the
continuous case, the outcome mean was adjusted for mean
differences that exist among clusters on the covariate X (see
Equation 6). The mean of a binary dummy variable is
simply the proportion of cases in the comparison group
(e.g., FEMALE = 1), so the CGM intercept for cluster j is
adjusted for differences in the proportion of comparison
group cases across clusters. That is, B, is the cluster mean
that would result had the proportion of females been iden-
tical across workgroups. Consistent with the continuous
case, Ty, quantifies the variation in the adjusted outcome
means. It is interesting to note that applying CGM to a
binary effect code variable yields an identical interpretation,
so the choice of coding has no bearing on the interpretation
of the intercept or on the intercept variance, provided that
the data are centered. Algebraic support for this conclusion
is given in Appendix B.

Applying CWC to a dummy or effect code variable also
yields the same interpretation as it did in the continuous
case. Specifically, applying CWC to a Level 1 dummy
variable (e.g., deviating each person’s gender value around
the proportion of females in cluster j) yields a Level 1
intercept that is interpreted as the unadjusted (i.e., weighted)
mean for cluster j. In fact, the CWC intercept is interpreted
as an unadjusted mean, regardless of whether one chooses to
use dummy or effect coding in the Level 1 equation, so the
choice of coding scheme is completely arbitrary. Again, the
algebraic details supporting this conclusion are given in
Appendix B.

In summary, the interpretation of the MLM intercept is
unaffected by the use of dummy or effect codes and depends
solely on the method of centering used. Under CWC, 3, is
interpreted as the unadjusted (i.e., weighted) mean for clus-
ter j, and T, quantifies the variation in the outcome variable
means. Under CGM, the dependent variable means are
adjusted for differences in the proportion of comparison
group cases (i.e., x; = 1) across clusters, so B; is inter-
preted as the adjusted mean for cluster j. As such, 7,
quantifies the variation in the adjusted means. Again, note
that these interpretations are identical to the continuous
case.

The coding scheme at Level 1 does affect the within-
cluster regression coefficient. Consistent with dummy cod-
ing in OLS regression, 3;; equals the group mean difference
within cluster j and is equal to half the mean difference
when effect codes are applied (see Cohen et al., 2003). It
also follows that the slope variance estimate (i.e., 7,;) will
differ across coding schemes, as will the covariance be-
tween the intercepts and slopes (i.e., 7y;). Specifically, the
slope variance under dummy coding will be exactly four
times larger than the variance under effect coding. How-
ever, the significance tests for the variance components will
be identical under dummy and effect coding, so the choice
of coding scheme makes very little difference.

As a cautionary note, we encourage readers to carefully
consider the impact of leaving a dummy or effect code
variable uncentered in the Level 1 model because doing so
may produce an awkward interpretation of certain model
parameters. For example, suppose that Equation 5 was
expanded to include an uncentered dummy code for gender
(i.e., male = 0, female = 1). Because workload was grand
mean centered, the Level 1 intercept would be interpreted as
the male mean, adjusted for cluster differences in workload.
By extension, T,, would then quantify the variation in the
adjusted outcome means for males; had both variables been
grand mean centered, Ty, would have quantified the varia-
tion in the well-being means, having partialled out both
gender and workload. In summary, the use of a binary
variable in the Level 1 equation does not change our cen-
tering recommendations, so researchers should carefully
consider the impact of centering, regardless of whether the
predictor variable is continuous or binary.

Centering Level 2 Predictors

A brief discussion of centering Level 2 predictors is
warranted before concluding. Centering at Level 2 is typi-
cally far less complex than the centering decisions required
at Level 1 because it is only necessary to choose between
the raw metric and CGM; CWC is not an option because
scores on a Level 2 variable are constant within each cluster.
In general, centering decisions at Level 2 can be based on
recommendations from the OLS regression literature (Aiken
& West, 1991; Cohen et al., 2003). For example, if the
Level 2 equation contains only first-order terms, choosing
between the raw metric and CGM will only affect the
intercept (y,o). Consistent with standard practice, CGM is
preferred when higher order terms are added to the Level 2
model (e.g., an interaction between a pair of Level 2 vari-
ables, or a quadratic effect in the Level 2 model). CGM
generally provides a convenient option for centering Level
2 variables, but it may also be useful to leave a variable in
its raw metric (e.g., a dummy or effect coded variable).

Summary and Conclusions

Psychological constructs are frequently expressed on ar-
bitrary metrics that lack a clearly interpretable or meaning-
ful zero value, and centering is frequently used to establish
a useful zero point. However, the centering of Level 1
predictors in MLM analyses is complex, and confusion
continues to exist over the appropriate use of CGM and
CWC. The purpose of this article was to explicate the vital
role that centering plays in defining MLM parameter esti-
mates and to provide researchers with rules of thumb to
guide centering decisions in their own research.

The decision to use CGM or CWC cannot be based on
statistical evidence, but depends heavily on one’s substan-
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tive research questions. This issue is clearly complex, and
no single model may sufficiently address an entire set of
substantive research questions. In fact, it seems quite rea-
sonable to use CGM and CWC within the context of a single
study. It is possible that one research question requires the
use of CGM, whereas a different question is best addressed
with CWC. Even when the substantive question calls for
CGM, Raudenbush and Bryk (2002) noted that CWC may
provide the most accurate estimates of the slope variance
due to the negative bias that can sometimes be present in the
CGM estimate of this parameter.

We proposed some straightforward rules of thumb that we
hope will be of use to substantive researchers and method-
ologists alike. These guidelines are as follows: (a) CWC is
appropriate if the Level 1 association between X and Y is of
substantive interest; (b) CGM is appropriate when one is
primarily interested in a Level 2 predictor and wants to
control for Level 1 covariates; (c) either CGM or CWC can
be used to examine the differential influence of a variable at
Level 1 and Level 2; and (d) CWC is preferable for exam-
ining cross-level interactions and interactions that involve a
pair of Level 1 variables, and CGM is appropriate for
interactions between Level 2 variables.

The thoughtless application of such guidelines is always
problematic, and we encourage readers to use our sugges-
tions as a springboard for examining the linkage between
their substantive research questions and the form of center-
ing that will best address those questions. In addition, we
strongly recommend that centering decisions are reported in
published articles and that authors provide a brief rationale
for their analytic choices.
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Appendix A

The Equivalence of CGM and CWC in Equation 16

In the equations below, a single asterisk is used to denote
CGM parameters, and a double asterisk is used for CWC.
Level 1 and Level 2 predictors are denoted X and W,
respectively. Following Kreft et al. (1995), the equivalence
of CGM and CWC is demonstrated by finding a solution to
Equation Al.

Yoo 'Y?;l()_fj) + '\/ﬁz(W,‘) + 'Y&(%)(Wj) + ’YTO(X,',' —X)
+ VTl(ij - )_C)(VV/) = vyt + 'Y?;l*()_cj) + ‘Y?;Z*(Wj)
5 () (W) + v (X — X)) + i (G — X)(W)
(AD)

Equation Al can be further expanded as follows:

Yﬁo + 'Yﬂ(;l()_cj) + Y?‘)‘z(W/) + 'YE%()_C,)(W/) + 'YTO(X@;)
- W’To()_f) + 'YTl(Xij) - VT](J_C)(W,) = vyt + '\/?;1*(3_5])

+ vEE (W) + vEF(X) (W) + v (X)) — vigF(x)
+ i (ij) - 'YTl*()_Cj)(Wj) (2)

Collecting like terms from both sides of Equation A2 yields
the following solution:

Yoo — Yio(X) = Vit (A3)
Yo = vEF — v (A4)
Yo — yii(x) = vt (AS)
Yo = Y - v (A6)
Yio = Yic* (A7)

Y = i (A8)

(Appendixes continue)
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Appendix B

Algebraic Details Associated With Centering
Binary Level 1 Predictors

To illustrate the use of CGM, consider a dummy variable
(i.e., x; = 0, 1) where the total sample N is comprised of n,
cases in the base group (i.e., x; = 0) and n, cases in the
comparison group (i.e., x; = 1). The grand mean for a
binary dummy variable is the total proportion of cases in the
comparison group, denoted p, as follows:

i 0) + 1
E;UZHO()NHI():%:Pr (B1)

X =
As such, X, can be written as x; — x = x; — p;.
Simplifying this expression (i.e., substituting x; = 0 or 1
into the equation) yields centered scores of —p; and p,, for
the base and comparison group cases, respectively, where p,,
is the total proportion of base group cases.

Under a dummy code scheme, Equation 6 can be rewritten as

BOj = )_’j - Blj()_cj —-X) = )_’j - Blj(plj - Pl)
:)_’j_()_’oj'_)_’u)(Pu_Pl), (B2)

where 3,; equals the mean difference within cluster j, and p,; is the
proportion of comparison group cases in cluster j. Equation B2
shows that 3, is equal to the outcome variable mean for cluster j,
minus an adjustment term that corrects for differences in the
proportion of comparison group cases across clusters.

Applying CGM to an effect code variable in the Level 1
equation yields the same result as the dummy variable case.
To illustrate, consider an effect code variable (i.e., x; = —1,
1) where the total sample N is comprised of n, cases in the
base group (i.e., x; = —1) and n, cases in the comparison
group (i.e., x; = 1). The grand mean for a binary effect code
variable is the difference between the proportion of base and
comparison group cases, as follows:

Sx; nf(=D+m(l)  —ngtn
N - N - N = D1 Po-

‘X/‘ =
(B3)
Xgmisnow x; — X; = x; — (p; — py), and the centered
scores become —2p, and 2p, for the base and comparison
group cases, respectively (i.e., after substituting x; = —1 or
1 into the expression for X..,,,,).
When using effect codes, 3;; equals half the mean dif-
ference in cluster j, so Equation 6 can be written as follows

Boj' = )_’j - Blj()_cj - X)
= yj - (-5)()_’0/' - )_’1]‘)(171]‘ —Po— Pt Po)s (B4)

where X; equals p;; — p;. Consistent with a dummy code
scheme, applying CGM to a binary effect code variable
yields a B; value that is interpreted as an adjusted mean for
cluster j. Although it may not be immediately obvious, the
portion of the adjustment that involves the proportion of
base and comparison group cases will be twice as large as
the corresponding term in Equation B2—intuitively, this
follows from the fact that the centered scores are twice as
large under effect coding. This is compensated for by the
fact that effect coding produces a 3,; value that is exactly
half as large as it was under dummy coding and results in
identical interpretations of B; and 7.

The algebraic details associated with CWC are as follows.
Consider a dummy variable (i.e., X = 0, 1) with ny; cases in
the base group (i.e., x; = 0) and ny; cases in the comparison
group (i.e., x; = 1). Under a dummy coding scheme, x; is equal
to the proportion of comparison group cases within cluster j
(ie., nyjfn; = py)), so X, can be written as x; — x; = x;

— py;- Substituting x; = 0 and 1 into the expression for X,
yields a centered score of —p,; for the base group cases (i.e.,
x; = 0), and a code of 1 — py; = p,, for the comparison group
cases (i.e., x; = 1). Equation B5 illustrates that the centered
dummy code values have a mean of zero within each cluster,
which is consistent with the continuous case.

_ Echc an( _plj) + ”1/(170/)
x. = =

]
n; n;

= —popij t PiPo; = 0 (B5)

Because x; = 0 after applying CWC, Equation 7 can be used
to verify that (B, is interpreted as the unadjusted (i.e.,
weighted) mean for cluster j.

When using a binary effect code, the mean for cluster j
is (ny; — ng)/n; = py; — pop and X, can be written as
x; — X = x; — (p; — py). Simplifying this expression
yields a centered score of —2p,; for the base group cases
(i.e.,x; = —1), and a score of 2p,, for the comparison group
cases (i.e., x; = 1). These centered values are identical to
those from the dummy code scheme, except for the presence
of a multiplicative constant. If the centered effect codes are
inserted into Equation BS5, the additional constant terms
cancel, resulting in x; = 0. As such, (B is interpreted as the
unadjusted mean for cluster j, regardless of whether one
uses dummy or effect codes to represent the binary variable.
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