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A powerful tool for analyzing nested designs in a variety of fields, 
multilevel/hierarchical modeling allows researchers to account 
for data collected at multiple levels. Multilevel Modeling Using 
R provides you with a helpful guide to conducting multilevel data 
modeling using the R software environment.

After reviewing standard linear models, the authors present the 
basics of multilevel models and explain how to fit these models 
using R. They then show how to employ multilevel modeling with 
longitudinal data and demonstrate the valuable graphical options 
in R. The book also describes models for categorical dependent 
variables in both single level and multilevel data. The book concludes 
with Bayesian fitting of multilevel models. For those new to R, the 
appendix provides an introduction to this system that covers basic 
R knowledge necessary to run the models in the book.

Features
• Shows how to properly model data structures to avoid incorrect 

parameter and standard error estimates
• Explains how multilevel models provide insights into your data 

that otherwise might not be detected
• Illustrates helpful graphical options in R appropriate for 

multilevel data
• Presents models for categorical dependent variables in single 

level and multilevel contexts
• Discusses multilevel modeling within the Bayesian framework
• Offers an introduction to R in the appendix for R novices 
• Uses various R packages to conduct the analyses and interpret 

the results, with the code available online 

Through the R code and detailed explanations provided, this book 
gives you the tools to launch your own investigations in multilevel 
modeling and gain insight into your research.
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Preface

The goal of this book is to provide you, the reader, with a comprehensive 
resource for the conduct of multilevel modeling using the R software pack-
age. Multilevel modeling, sometimes referred to as hierarchical modeling, 
is a powerful tool that allows a researcher to account for data collected at 
multiple levels. For example, an educational researcher may gather test 
scores and measures of socioeconomic status (SES) for students who attend 
a number of different schools. The students would be considered level-1 
sampling units, and the schools would be referred to as level-2 units.

Ignoring the structure inherent in this type of data collection can, as we 
discuss in Chapter 2, lead to incorrect parameter and standard error esti-
mates. In addition to modeling the data structure correctly, we will see in 
the following chapters that the use of multilevel models can also provide 
insights into the nature of relationships in our data that might otherwise not 
be detected.

After reviewing standard linear models in Chapter 1, we will turn our 
attention to the basics of multilevel models in Chapter 2, before learning 
how to fit these models using the R software package in Chapters 3 and 4. 
Chapter 5 focuses on the use of multilevel modeling in the case of longitu-
dinal data, and Chapter 6 demonstrates the very useful graphical options 
available in R, particularly those most appropriate for multilevel data. 
Chapters 7 and 8 describe models for categorical dependent variables, first 
for single-level data, and then in the multilevel context. Finally, we conclude 
in Chapter 9 with Bayesian fitting of multilevel models.

We hope that you find this book to be helpful as you work with multi-
level data. Our goal is to provide you with a guidebook that will serve as 
the launching point for your own investigations in multilevel modeling. 
The R code and discussion of its interpretation contained in this text should 
provide you with the tools necessary to gain insights into your own research, 
in whatever field it may be. We appreciate your taking the time to read our 
work and hope that you find it as enjoyable and informative to read as it was 
for us to write.
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1
Linear Models

Statistical models provide powerful tools to researchers in a wide array of 
disciplines. Such models allow for the examination of relationships among 
multiple variables, which in turn can lead to a better understanding of the 
world. For example, sociologists use linear regression to gain insights into 
how factors such as ethnicity, gender, and level of education are related to 
an individual’s income. Biologists can use the same type of model to under-
stand the interplay between sunlight, rainfall, industrial runoff, and biodi-
versity in a rain forest. And using linear regression, educational researchers 
can develop powerful tools for understanding the role that different instruc-
tional strategies have on student achievement. In addition to providing a 
path by which various phenomena can be better understood, statistical 
models can also be used as predictive tools. For example, econometricians 
might develop models to predict labor market participation given a set of 
economic inputs. Higher education administrators may use similar types of 
models to predict grade point averages for prospective incoming freshmen 
to identify those who might need academic assistance during their first year 
of college.

As can be seen from these few examples, statistical modeling is very 
important across a wide range of fields, providing researchers with tools for 
both explanation and prediction. Certainly, the most popular of such mod-
els over the last 100 years of statistical practice has been the general linear 
model (GLM). The GLM links a dependent or outcome variable to one or 
more independent variables and can take the form of such popular tools as 
analysis of variance (ANOVA) and regression.

Based on GLM’s popularity and utility and its ability to serve as the foun-
dation for many other models including the multilevel types featured in 
this book, we will start with a brief review of the linear model, focusing 
on regression. This review starts with a short technical discussion of linear 
regression models, followed by a description of how they can be estimated 
using the R language and environment (R Core Team, 2013).

The technical aspects of this discussion are intentionally not highly 
detailed as we focus on the model from a conceptual perspective. However, 
sufficient detail is presented so that a reader having only limited famil-
iarity with the linear regression model will be provided with a basis for 
moving forward to multilevel models so that specific features of these 
more complex models that are shared with linear models can be explicated. 
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Readers  familiar with  linear regression and using R to conduct such 
analyses may elect to skip this chapter with no loss of understanding of 
future chapters.

1.1  Simple Linear Regression

As noted above, the GLM framework serves as the basis for the multilevel 
models that we describe in subsequent chapters. Thus, in order to provide a 
foundation for the rest of the book, we will focus in this chapter on the linear 
regression model, although its form and function can easily be translated to 
ANOVA as well. The simple linear regression model in population form is

	 yi = β0 + β1xi + εi	 (1.1)

where yi is the dependent variable for individual i in the data set and xi is 
the independent variable for subject i (i = 1, …, N). The terms β0 and β1, are 
the intercept and slope of the model, respectively. In a graphical sense, the 
intercept is the point at which the line in Equation (1.1) crosses the y axis at 
x = 0. It is also the mean, specifically the conditional mean, of y for individuals 
with values of 0 on x. This latter definition will be most useful in actual prac-
tice. The slope β1 expresses the relationship between y and x. Positive slope 
values indicate that larger values of x are associated with correspondingly 
larger values of y, while negative slopes mean that larger x values are associ-
ated with smaller y values. Holding everything else constant, larger values 
of β1 (positive or negative) indicate a stronger linear relationship between 
y and x. Finally, ει represents the random error inherent in any statistical 
model, including regression. It expresses the fact that for any individual, i, 
the model will not generally provide a perfect predicted value of yi, denoted �
yi and obtained by applying the regression model as

	 = β + βy xˆ i i0 1 	 (1.2)

Conceptually, this random error is representative of all factors that may 
influence the dependent variable other than x.

1.1.1  Estimating Regression Models with Ordinary Least Squares

In virtually all real-world contexts, the population is unavailable to the 
researcher. Therefore, β0 and β1 must be estimated using sample data taken 
from the population. The statistical literature describes several methods for 
obtaining estimated values of the regression model parameters (b0 and b1, 
respectively) given a set of x and y. By far, the most popular and widely used 
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of these methods is ordinary least squares (OLS). The vast majority of other 
approaches are useful in special cases involving small samples or data that 
fail to conform to the distributional assumptions undergirding OLS.

The goal of OLS is to minimize the sum of the squared differences between 
the observed values of y and the model predicted values of y across the sam-
ple. This difference, known as the residual, is written as

	 = −e y ŷi i i 	 (1.3)

Therefore, the method of OLS seeks to minimize

	 ∑ ∑ )(= −
= =

e y ŷi

i

n

i i

i

n
2

1

2

1

	 (1.4)

The actual mechanism for finding the linear equation that minimizes the 
sum of squared residuals involves the partial derivatives of the sum of 
squared function with respect to the model coefficients β0 and β1. We will 
leave these mathematical details to excellent references such as Fox (2008). 
Note that in the context of simple linear regression, the OLS criteria reduce 
to the following equations that can be used to obtain b0 and b1 as

	 =






b r

s
s

y

x
1 	 (1.5)

and

	 = −b y b x0 1 	 (1.6)

where, r is the Pearson product moment correlation coefficient between 
x and y, sy is the sample standard deviation of y, sx is the sample standard 
deviation of x, y  is the sample mean of y, and x  is the sample mean of x.

1.2  Distributional Assumptions Underlying Regression

The linear regression model rests upon several assumptions about the dis-
tribution of the residuals in the broader population. Although a researcher 
typically is never able to collect data from an entire population, it is possible 
to assess empirically whether the assumptions are likely to hold true based 
on sample data.

The first assumption that must hold true for linear models to function opti-
mally is that the relationship between yi and xi is linear. If the relationship 
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is not linear, then clearly an equation for a line will not provide adequate fit 
and the model is thus misspecified. A second assumption is that the variance 
in the residuals is constant regardless of the value of xi. This assumption is 
typically referred to as homoscedasticity and is a generalization of the homo-
geneity of error variance assumption in ANOVA. Homoscedasticity implies 
that the variance of yi is constant across values of xi. The distribution of the 
dependent variables around the regression line is literally the distribution of 
the residuals, thus making clear the connection of homoscedasticity of errors 
with the distribution of yi around the regression line. The third assumption 
is that the residuals are normally distributed in a population. Fourth is the 
assumption that the independent variable x is measured without error and 
that it is unrelated to the model error term ε. It should be noted that the 
assumption of x measured without error is not as strenuous as one might 
first assume. In fact, for most real-world problems, the model will work well 
even when the independent variable is not error free (Fox, 2008). Fifth and 
finally, the residuals for any two individuals in a population are assumed to 
be independent of one another. This independence assumption implies that 
the unmeasured factors influencing y are not related from one individual to 
another and addressed directly with the use of multilevel models, as we will 
see in Chapter 2.

In many research situations, individuals are sampled in clusters, such that 
we cannot assume that individuals from the same cluster will have uncor-
related residuals. For example, if samples are obtained from multiple neigh-
borhoods, individuals within the same neighborhoods may tend to be more 
like one another than they are like individuals from other neighborhoods. 
A  prototypical example of this is children in schools. Due to a variety of 
factors, children attending the same school often have more in common with 
one another than they do with children from other schools. These common 
factors may include neighborhood socioeconomic status, school administra-
tion policies, and school learning environment, to name just a few.

Ignoring this clustering or not even realizing it is a problem can be detri-
mental to the results of statistical modeling. We explore this issue in great 
detail later in the book, but for now we simply want to mention that a fail-
ure to satisfy the assumption of independent errors is (1) a major problem 
and (2) often a problem that may be overcome with appropriate models, 
such as multilevel models that explicitly consider the nesting of data.

1.3  Coefficient of Determination

When a linear regression model has been estimated, researchers generally 
want to measure the relative magnitude of the relationships of the variables. 
One useful tool for ascertaining the strength of the relationship between 
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x  and y is the coefficient of determination, which is the squared multiple 
correlation coefficient denoted R2 in Equation (1.7). R2 reflects the proportion 
of variation in the dependent variable that is explained by the independent 
variable. Mathematically, R2 is calculated as

	
∑
∑

∑
∑
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= =
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	 (1.7)

The terms in Equation (1.7) are as defined previously. The value of this sta-
tistic always lies between 0 and 1, with larger numbers indicating a stronger 
linear relationship between x and y, implying that the independent variable 
accounts for more variance in the dependent. R2 is a very commonly used 
measure of the overall fit of a regression model. Along with the parameter 
inference discussed below, it serves as the primary mechanism by which the 
relationship between the two variables is quantified.

1.4  Inference for Regression Parameters

A second method for understanding the nature of the relationship between 
x and y involves making inferences about the relationship in the population 
given the sample regression equation. Because b0 and b1 are sample esti-
mates of the population parameters β0 and β1, respectively, they are sub-
ject to sampling error as is any sample estimate. This means that although 
the estimates are unbiased if the aforementioned assumptions hold, they 
are not precisely equal to the population parameter values. Furthermore, 
were we to draw multiple samples from the population and estimate the 
intercept and slope for each, the values of b0 and b1 would differ across 
samples even though they would estimate the same population parameter 
values for β0 and β1. The magnitude of this variation in parameter estimates 
across samples can be estimated from our single sample using a statistic 
known as the standard error.

The standard error of the slope, denoted as σb1 in a population, can be 
thought of as the standard deviation of slope values obtained from all pos-
sible samples of size n taken from the population. Similarly, the standard 
error of the intercept σb0 is the standard deviation of the intercept values 
obtained from all such samples. Clearly, it is not possible to obtain census 
data from a population in an applied research context. Therefore, we must 
estimate the standard errors of both the slope (sb1) and intercept (sb0) using 
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data from a single sample, much as we did with b0 and b1. To obtain sb1, 
we must first calculate the variance of the residuals,

	
∑

=
− −
=S

e

n p 1e

i

i

n

2

2

1 	 (1.8)

where ei is the residual value for individual i, N is the sample size, and p is the 
number of independent variables (one in the case of simple regression). Then
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The standard error of the intercept is calculated as

	
∑

= =S S

x

n
b b

i

i

n
2

1
0 1 	 (1.10)

Because the sample intercept and slope are only estimates of the popu-
lation parameters, researchers often are interested in testing hypoth-
eses to infer whether the data represent a departure from what would be 
expected in what is commonly referred to as the null case (the null value 
holding true  in the population can be rejected). Usually (but not always), 
the inference of interest concerns testing that the population parameter is 0. 
In particular, a non-0 slope in a population means that x is linearly related 
to y. Therefore, researchers typically are interested in using the sample to 
make inference about whether the population slope is 0 or not. Inference 
can also be made regarding the intercept, and again the typical focus is on 
whether the value is 0 in the population.

Inference about regression parameters can be made using confidence inter-
vals and hypothesis tests. Much as with the confidence interval of the mean, 
the confidence interval of the regression coefficient yields a range of values 
within which we have some level of confidence (e.g., 95%) that the population 
parameter value resides. If our particular interest is in whether x is linearly 
related to y, then we would simply determine whether 0 is in the interval for β1. 
If so, then we could not conclude that the population value differs from 0.
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The absence of a statistically significant result (i.e., an interval not 
containing 0) does not imply that the null hypothesis is true. Rather it means 
that the sample data contains insufficient evidence to reject the null. Similarly, 
we can construct a confidence interval for the intercept, and if 0 is within the 
interval, we would conclude that the value of y for an individual with x = 0 
could plausibly be but is not necessarily 0. The confidence intervals for the 
slope and intercept take the following forms:

	 ±b t scv b1 1 	 (1.11)

and

	 ±b t scv b0 0 	 (1.12)

Here the parameter estimates and their standard errors are as described pre-
viously, while tcv is the critical value of the t distribution for 1 – α/2 (e.g., the 
0.975 quantile if α = 0.05) with n – p – 1 degrees of freedom. The value of α is 
equal to 1 minus the desired level of confidence. Thus, for a 95% confidence 
interval (0.95 level of confidence), α would be 0.05.

In addition to confidence intervals, inference about the regression param-
eters can also be made using hypothesis tests. In general, the forms of this 
test for the slope and intercept, respectively, are

	 = − β
t

b
s

b
b

1 1
1

1

	 (1.13)

	 = − β
t

b
s

b
b

0 0
0

0

	 (1.14)

The terms β1 and β0 are the parameter values under the null hypothesis. 
Again, most often the null hypothesis posits that there is no linear relationship 
between x and y (β1 = 0) and that the value of y = 0 when x = 0 (β0 = 0). For sim-
ple regression, each of these tests is conducted with n – 2 degrees of freedom.

1.5  Multiple Regression

The linear regression model can be extended very easily to accommodate 
multiple independent variables at once. In the case of two regressors, the 
model takes the form

	 yi = β0 + β1x1i + β2x2i + εi	 (1.15)
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In many ways, this model is interpreted like the one for simple linear 
regression. The only major difference between simple and multiple regres-
sion interpretation is that each coefficient is interpreted in turn holding 
constant the value of the other regression coefficient. In particular, the 
parameters are estimated by b0, b1, and b2, and inferences about these 
parameters are made in the same fashion for both confidence intervals and 
hypothesis tests.

The assumptions underlying this model are also the same as those described 
for the simple regression model. Despite these similarities, three additional 
topics regarding multiple regression need to be considered here. These are 
inference for the set of model slopes as a whole, an adjusted measure of the 
coefficient of determination, and collinearity among the independent variables. 
Because these issues will be important in the context of multilevel modeling as 
well, we will address them in detail.

With respect to model inference, for simple linear regression, the most 
important parameter is generally the slope, so that inference for it will be 
of primary concern. When a model has multiple x variables, the researcher 
may want to know whether the independent variables taken as a whole are 
related to y. Therefore, some overall test of model significance is desirable. 
The null hypothesis for this test is that all of the slopes are equal to 0 in the 
population; i.e., none of the regressors is linearly related to the dependent 
variable. The test statistic for this hypothesis is calculated as

	
( )

=
− −

= − −









−



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
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1
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2 	 (1.16)

Here, terms are as defined in Equation (1.7). This test statistic is distributed 
as an F with p and n – p – 1 degrees of freedom. A statistically significant 
result would indicate that one or more of the regression coefficients are not 
equal to 0 in the population. Typically, the researcher would then refer to the 
tests of individual regression parameters described above in order to iden-
tify which parameters were not equal to 0.

A second issue to be considered by researchers in the context of multi-
ple regression is the notion of adjusted R2. Stated simply, the inclusion of 
additional independent variables in the regression model will always yield 
higher values of R2, even when these variables are not statistically signifi-
cantly related to the dependent variable. In other words, there is a capitaliza-
tion on chance that occurs in the calculation of R2.

As a consequence, models including many regressors with negligible 
relationships with y may produce an R2 that would suggest the model 
explains a great deal of variance in y. An option for measuring the vari-
ance explained in the dependent variable that accounts for this additional 
model complexity would be helpful to a researcher seeking to under-
stand the true nature of the relationship between the set of independent 
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variables and the dependent. Such a measure exists in the form of the 
adjusted R2 value, which is commonly calculated as

	 )(= − − −
− −









R R

n
n p

1 1
1

1A
2 2 	 (1.17)

RA
2  only increases with the addition of an x if that x explains more variance 

than would be expected by chance. RA
2  will always be less than or equal to the 

standard R2. It is generally recommended to use this statistic in practice when 
models containing many independent variables are used.

A final important issue specific to multiple regression is collinearity, which 
occurs when one independent variable is a linear combination of one or more 
of the other independent variables. In such a case, regression coefficients and 
their corresponding standard errors can be quite unstable, resulting in poor 
inference. It is possible to investigate the presence of collinearity using a sta-
tistic known as the variance inflation factor (VIF). To calculate the VIF for xj, 
we would first regress all the other independent variables onto xj and obtain 
an Rxi

2  value. We then calculate

	 =
−

VIF
R

1
1 x

2 	 (1.18)

The VIF will become large when Rxj
2  is near 1, indicating that xj has very 

little unique variation when the other independent variables in the model 
are considered. That is, if the other p – 1 regressors can explain a high pro-
portion of xj, then xj does not add much to the model above and beyond 
the other p – 1 regression. Collinearity in turn leads to high sampling 
variation in bj, resulting in large standard errors and unstable parameter 
estimates. Conventional rules of thumb have been proposed for determin-
ing when an independent variable is highly collinear with the set of other 
p – 1 regressors. Thus, the researcher may consider collinearity a problem 
if VIF > 5 or 10 (Fox, 2008). The typical response to collinearity is to remove 
the offending variable(s) or use an alternative approach to conducting the 
regression analysis such as ridge regression or regression following a prin-
cipal components analysis.

1.6  Example of Simple Manual Linear Regression

To demonstrate the principles of linear regression discussed above, let us 
consider a simple scenario in which a researcher collected data on college 
grade point averages (GPAs) and test anxiety using a standard measure by 
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which higher scores indicate greater anxiety when taking a test. The sample 
consisted of 440 college students who were measured on both variables. The 
researcher is interested in the extent to which test anxiety is related to col-
lege GPA, so that GPA is the dependent variable and anxiety is the indepen-
dent variable. The descriptive statistics for each variable and the correlations 
between them appear in Table 1.1.

We can use this information to obtain estimates for both the slope and 
intercept of the regression model using Equations (1.4) and (1.5). First, the 
slope is calculated as

	
= −







 = −b 0.30

0.51
10.83

0.0141

indicating that individuals with higher test anxiety scores will generally 
have lower GPAs. Next, we can use this value and information in the table to 
calculate the intercept estimate:

	 b0 = 3.12 − (−0.014) (35.14) = 3.63

The resulting estimated regression equation is then

	 ( )= −GPA anxietyˆ 3.63 0.014

Thus, this model would predict that for a one-point increase in the anxiety 
assessment score, the GPA would decrease by −0.014 points.

To better understand the strength of the relationship between test anxi-
ety and GPA, we will want to calculate the coefficient of determination. 
To do this, we need both the SSR and SST, which take the values 10.65 and 
115.36, yielding

	 = =R
10.65
115.36

0.092

This result suggests that approximately 9% of the variation in GPA is explained 
by variation in test anxiety scores. Using this R2 value and Equation (1.14), 

TABLE 1.1

Descriptive Statistics and Correlation of GPA and 
Test Anxiety

Variable Mean Standard Deviation Correlation

GPA 3.12 0.51 –0.30
Anxiety 35.14 10.83
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we  can  calculate the F statistic t-test for whether any of the model slopes 
(in this case only one) are different from 0 in the population:

	
= − −



 −





 = =F

440 1 1
1

0.09
1 0.09

438(0.10) 43.8

This test has p and n – p – 1 degrees of freedom, or 1 and 438 in this situ-
ation. The p value of this test is less than 0.001, leading us to conclude that 
the slope in the population is indeed significantly different from 0 because 
the p value is less than the Type I error rate specified. Thus, test anxiety is lin-
early related to GPA. The same inference could be conducted using the t-test 
for the slope. First we must calculate the standard error of the slope estimate:
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For these data,

	
=

− −
= =S

104.71
440 1 1

0.24 0.49E

In turn, the sum of squared deviations for x (anxiety) was 53743.64, and we 
previously calculated R2 = 0.09. Thus, the standard error for the slope is

	
( )=

−




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= =S
1

1 0.09
0.49

53743.64
1.05 0.002 0.002b1

The test statistic for the null hypothesis that β1 = 0 is calculated as

	 = − = − = −t
b

s
0 0.014

0.002
7.00

b

1

1

with n – p – 1 or 438 degrees of freedom. The p value for this test statistic 
value is less than 0.001 and thus we can probabilistically infer that the value 
of the slope in the population is not zero, with the best sample point estimate 
being –0.014.

Finally, we can also draw inference about β1 through a 95% confidence 
interval, as shown in Equation (1.9). For this calculation, we must deter-
mine the value of the t distribution with 438 degrees of freedom that cor-
respond to the 1 – 0.05/2 or 0.975 point in the distribution. We can do so by 
using a t table in the back of a textbook or with standard computer software 



12 Multilevel Modeling Using R

such as SPSS. In either case, the critical value for this example is 1.97. The 
confidence interval can then be calculated as

	 (−0.014 − 1.97 (0.002), −0.014 + 1.97 (0.002))
	 (−0.014 − 0.004, −0.104 + 0.004)
	 (−0.018, −0.010)

The fact that 0 is not in the 95% confidence interval simply supports the 
conclusion we reached using the p value as described above. Also, given this 
interval, we can infer that the actual population slope value lies between 
–0.018 and –0.010. Thus, anxiety could plausibly have an effect as small as 
–0.010 or as large as –0.018.

1.7  Regression in R

In R, the function call for fitting linear regression is lm, which is part of the 
stats library that is loaded by default each time R is started. The basic form 
for a linear regression model using lm is:

lm(formula, data)

where formula defines the linear regression form and data indicates the 
data set used in the analysis, examples of which appear below. Returning to 
the previous example, predicting GPA from measures of physical (BStotal) 
and cognitive academic anxiety (CTA.tot), the model is defined in R as

Model1.1 <- lm(GPA ~ CTA.tot + BStotal, Cassidy)

This line of R code is referred to as a function call and defines the regres-
sion equation. The dependent variable GPA is followed by the independent 
variables CTA.tot and BStotal, separated by ~. The data set Cassidy is 
also given here, after the regression equation has been defined. Finally, the 
output from this analysis is stored in the object Model1.1. To view this out-
put, we can type the name of this object in R, and hit return to obtain the 
following:

Call:
lm(formula = GPA ~ CTA.tot + BStotal, data = Cassidy)

Coefficients:
(Intercept)	 CTA.tot	 BStotal
	 3.61892	 -0.02007	 0.01347

The output obtained from the basic function call will return only val-
ues for the intercept and slope coefficients, lacking information regarding 
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model fit (e.g., R2) and significance of model parameters. Further infor
mation on our  model can be obtained by requesting a summary of 
the model.

summary(Model1.1)

Using this call, R will produce the following:

Call:
lm(formula = GPA ~ CTA.tot + BStotal, data = Cassidy)

Residuals:
	 Min	 1Q	 Median	 3Q	 Max
-2.99239	 -0.29138	 0.01516	 0.36849	 0.93941

Coefficients:
	 Estimate	 Std. Error	 t value	 Pr(>|t|)
(Intercept)	 3.618924	 0.079305	 45.633	 < 2e-16 ***
CTA.tot	 -0.020068	 0.003065	 −6.547	 1.69e-10 ***
BStotal	 0.013469	 0.005077	 2.653	 0.00828 **
––-
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 0.4852 on 426 degrees of freedom
	 (57 observations deleted due to missingness)
Multiple R-squared: 0.1066,	 Adjusted R-squared: 0.1024
F-statistic: 25.43 on 2 and 426 DF, p-value: 3.706e-11

From the model summary we can obtain information on model fit (overall 
F  test for significance, R2, and standard error of the estimate), parameter 
significance tests, and a summary of residual statistics. As the F test for the 
overall model is somewhat abbreviated in this output, we can request 
the entire ANOVA result, including sums of squares and mean squares by 
using the anova(Model1.1) function call.

Analysis of Variance Table

Response: GPA
	 Df	 Sum Sq	 Mean Sq	 F value	 Pr(>F)
CTA.tot	 1	 10.316	 10.3159	 43.8125	 1.089e-10 ***
BStotal	 1	 1.657	 1.6570	 7.0376	 0.00828 **
Residuals	 426	 100.304	 0.2355
––-
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Often in a regression model, we are interested in additional information that 
the model produces such as predicted values and residuals. Using the R call 
attributes(), we can obtain a list of the additional information available 
for the lm function.
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attributes(Model1.1)
$names
 [1] "coefficients"	 "residuals"	 "effects"	 "rank"	 "fitted.values"
 [6] "assign"	 "qr"	 "df.residual"	 "na.action"	 "xlevels"
[11] "call"	 "terms"	 "model"

$class
[1] "lm"

This is a list of attributes or information that may be pulled from the fitted 
regression model. To obtain this information, we can call for the particular 
attribute. For example, if we want to obtain the predicted GPA for each indi-
vidual in the sample, we would simply type the following followed by the 
enter key:

Model1.1$fitted.values

1	 3	 4	 5	 8	 9	 10	 11	 12
2.964641 3.125996 3.039668 3.125454 2.852730 3.152391 3.412460 3.011917 2.611103
	 13	 14	 15	 16	 17	 19	 23	 25	 26
3.158448 3.298923 3.312121 2.959938 3.205183 2.945928 2.904979 3.226064 3.245318
	 27	 28	 29	 30	 31	 34	 35	 37	 38
2.944573 3.171646 2.917635 3.198584 3.206267 3.073204 3.258787 3.118584 2.972594
	 39	 41	 42	 43	 44	 45	 46	 48	 50
2.870630 3.144980 3.285454 3.386064 2.871713 2.911849 3.166131 3.051511 3.251917

Thus for example, the predicted GPA for subject 1 based on the prediction 
equation would be 2.96. By the same token, we can obtain the regression 
residuals with the following command:

Model1.1$residuals

	1	 3	 4	 5	 8	 9
-0.4646405061 -0.3259956916 -0.7896675749 -0.0254537419 0.4492704297 -0.0283914353
	 10	 11	 12	 13	 14	 15
-0.1124596847      -0.5119169570        0.0888967457       -0.6584484215  -0.7989228998       -0.4221207716
	 16	 17	 19	 23	 25	 26
-0.5799383942 -0.3051829226 -0.1459275978 -0.8649791080 0.0989363702 -0.2453184879
	 27	 28	 29	 30	 31	 34
-0.4445727235       0.7783537067 -0.8176350301     0.1014160133 0.3937331779   -0.1232042042
	 35	 37	 38	 39	 41	 42
 0.3412126654       0.4814161689     0.9394056837  -0.6706295541  -0.5449795748   -0.4194540531
	 43	 44	 45	 46	 48	 50
-0.4960639410  -0.0717134535   -0.4118490187    0.4338687432   0.7484894275        0.4480825762

From this output, we can see that the predicted GPA for the first individual 
in the sample was approximately 0.465 points below the actual GPA.

1.7.1  Interaction Terms in Regression

More complicated regression relationships can also be easily modeled 
using the lm() function. Let us consider a moderation analysis involving 
the anxiety measures. In this example, an interaction between cognitive 
test anxiety and physical anxiety is modeled in addition to the main effects 
for the two variables. An interaction is simply computed as the product 
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of the interacting variables, so that the moderation model using lm() is 
defined as:

Mo�del1.2 <- lm(GPA ~ CTA.tot + BStotal + CTA.tot*BStotal, 
Cassidy)

Model1.2

Call:
lm�(formula = GPA ~ CTA.tot + BStotal + CTA.tot * BStotal, data 
= Cassidy)

Residuals:
	 Min	 1Q	 Median	 3Q	 Max
-2.98711	 -0.29737	 0.01801	 0.36340	 0.95016

Coefficients:
	 Estimate	 Std. Error	 t value	 Pr(>|t|)
(Intercept)	 3.8977792	 0.2307491	 16.892	 < 2e-16 ***
CTA.tot	 -0.0267935	 0.0060581	 -4.423	 1.24e-05 ***
BStotal	 -0.0057595	 0.0157812	 -0.365	 0.715
CTA.tot:BStotal	 0.0004328	 0.0003364	 1.287	 0.199
––-
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Re�sidual standard error: 0.4849 on 425 degrees of freedom 
(57 observations deleted due to missingness)

Multiple R-squared: 0.1101,	 Adjusted R-squared: 0.1038
F-statistic: 17.53 on 3 and 425 DF, p-value: 9.558e-11

Here the slope for the interaction is denoted CTA.tot:BStotal, takes the 
value 0.0004, and is nonsignificant (t = 1.287, p = 0.199), indicating that the 
level of physical anxiety symptoms (BStotal) does not change or moderate 
the relationship between cognitive test anxiety (CTA.tot) and GPA.

1.7.2  Categorical Independent Variables

The lm function is also easily capable of incorporating categorical variables 
into regression. Let us consider an analysis for predicting GPA from cogni-
tive test anxiety (CTA.tot) and the categorical variable gender. To incorpo-
rate gender into the model, it must be dummy coded such that one category 
(e.g., male) takes the value of 1 and the other category (e.g., female) takes the 
value of 0. In this example, we named the variable Male, where 1 = male 
and 0 = not male (female). Defining a model using a dummy variable with 
the lm function then becomes no different from using continuous predictor 
variables.
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Model1.3 <- lm(GPA~CTA.tot + Male, Acad)

summary(Model1.3)

Call:
lm(formula = GPA ~ CTA.tot + Male, data = Acad)

Residuals:
	 Min	 1Q	 Median	 3Q	 Max
	-3.01149	 -0.29005	 0.03038	 0.35374	 0.96294

Coefficients:
	 Estimate	 Std. Error	 t value	 Pr(>|t|)
(Intercept)	 3.740318	 0.080940	 46.211	 < 2e-16 ***
CTA.tot	 -0.015184	 0.002117	 -7.173	 3.16e-12 ***
Male	 -0.222594	 0.047152	 -4.721	 3.17e-06 ***
––-
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Re�sidual standard error: 0.4775 on 437 degrees of freedom 
(46 observations deleted due to missingness)

Multiple R-squared: 0.1364,	 Adjusted R-squared: 0.1324
F-statistic: 34.51 on 2 and 437 DF, p-value: 1.215e-14

In this example, the slope for the dummy variable Male is negative and sig-
nificant (β = –0.223, p < 0.001), indicating that males have significantly lower 
mean GPAs than females.

Depending on the format in which the data are stored, the lm function is 
capable of dummy coding categorical variables. If a variable has been desig-
nated as categorical (as often happens if you read data in from an SPSS file 
in which the variable is designated as such) and is used in the lm function, 
it will automatically dummy code the variable in your results. For example, 
if instead of using the Male variable as described above, we used Gender 
as a categorical variable coded as female and male, we would obtain the 
following results from the model specification and summary commands.

Model1.4 <- lm(GPA~CTA.tot + Gender, Acad)

summary(Model1.4)

Call:
lm(formula = GPA ~ CTA.tot + Gender, data = Acad)

Residuals:
	 Min	 1Q	 Median	 3Q	 Max
-3.01149	 -0.29005	 0.03038	 0.35374	 0.96294

Coefficients:
	 Estimate	 Std. Error	 t value	 Pr(>|t|)
(Intercept)	 3.740318	 0.080940	 46.211	 < 2e-16 ***
CTA.tot	 -0.015184	 0.002117	 -7.173	 3.16e-12 ***
Gender[T.male]	 -0.222594	 0.047152	 -4.721	 3.17e-06 ***
––-
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Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Re�sidual standard error: 0.4775 on 437 degrees of freedom 
(46 observations deleted due to missingness)

Multiple R-squared: 0.1364,	 Adjusted R-squared: 0.1324
F-statistic: 34.51 on 2 and 437 DF, p-value: 1.215e-14

A comparison of results between models Model1.3 and Model1.4 reveals 
identical coefficient estimates, p values, and model fit statistics. The only 
difference between the two sets of results is that for Model1.4 R reported 
the slope as Gender[t.male], indicating that the variable was dummy 
coded automatically so that male is 1 and not male is 0.

In the same manner, categorical variables consisting of more than two 
categories can also be incorporated easily into a regression model, either 
through direct use of the categorical variable or dummy coding prior to 
analysis. In the following example, the variable Ethnicity includes three 
possible groups (African American, Caucasian, and Other). By including this 
variable in the model call, we are implicitly requesting that R automatically 
dummy code it for us.

GPAmodel1.5 <- lm(GPA~CTA.tot + Ethnicity, Acad)

summary(GPAmodel1.5)

Call:
lm(formula = GPA ~ CTA.tot + Ethnicity, data = Acad)

Residuals:
	 Min	 1Q	 Median	 3Q	 Max
-2.95019	 -0.30021	 0.01845	 0.37825	 1.00682

Coefficients:
	 Estimate	 Std. Error	 t value	Pr(>|t|)
(Intercept)	 3.670308	 0.079101	 46.400	 < 2e-16 ***
CTA.tot	 -0.015002	 0.002147	 -6.989	1.04e-11 ***
Ethnicity[T.African American]	-0.482377	 0.131589	 -3.666	0.000277 ***
Ethnicity[T.Other]	 -0.151748	 0.136150	 -1.115	0.265652
––-
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Re�sidual standard error: 0.4821 on 436 degrees of freedom 
(46 observations deleted due to missingness)

Multiple R-squared: 0.1215,	 Adjusted R-squared: 0.1155
F-statistic: 20.11 on 3 and 436 DF, p-value: 3.182e-12

Since we have slopes for African American and Other, we know that Cauca
sian serves as the reference category, which is coded as 0. Results  indicate 
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a  significant positive slope for African American (β = –0.482, p < 0.001), 
and  a  nonsignificant slope for Other (β = 0.152, p > 0.05), indicating that 
African Americans have significantly lower GPAs than Caucasians but the 
GPA result for the Other ethnicity category was not significantly different 
from those for Caucasians.

Finally, let us consider some issues associated with allowing R to dummy 
code categorical variables automatically. First, R will always automatically 
dummy code the first category listed as the reference category. If a more 
theoretically suitable dummy coding scheme is desired, it will be necessary 
to order the categories so that the desired reference category is first or simply 
recode dummy variables manually.

Also, it is important to remember that automatic dummy coding occurs 
only when a variable is labeled in a system as categorical. This will occur 
automatically if the categories are coded as letters. However, if a categorical 
variable is coded 1, 2 or 1, 2, 3 but not specifically designated as categorical, 
the system will view it as continuous and treat it as such. To ensure that a 
variable is treated as categorical when that is what we desire, we simply use 
the as.factor command. For the Male variable in which males are coded 
as 1 and females as 0, we would type

Male<-as.factor(Male)

We would then be able to assume the Male variable is categorical. In addi-
tion, if the dummy variable has only two levels, as is the case with Male, 
then it need not be converted to a categorical factor because the results from 
the regression analysis will be identical either way.

1.7.3  Checking Regression Assumptions with R

When checking assumptions for linear regression models, it is often desir-
able to create a plot of the residuals. Diagnostic residual plots can be easily 
obtained by using the residualPlots function from the car R package 
that we would need to install in our R workspace as explained in the appen-
dix at the end of this book that introduces working with R. Let us again 
return to Model1.1 predicting GPA from cognitive test anxiety and physi-
cal anxiety symptoms. After the regression model is created (Model1.1), 
we can easily obtain diagnostic residual scatterplots using the following 
command:

Library(car)
residualPlots(Model1.1)

This command will produce scatterplots of the Pearson residuals against 
each predictor variable as well as against the fitted values. In addition, 
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the  residualPlots command will provide lack-of-fit tests in which 
a t-test for the predictor squared is computed and a fit line added to the 
plot to help check for nonlinear patterns in the data. A Tukey’s test for 
non-additivity is also computed for the plot of residuals against the fit-
ted values to acquire further information about the adequacy of model fit 
along with a lack-of-fit test for each predictor. Tukey’s statistic is obtained 
by adding the squares of the fitted values to the original regression model. 
It tests the null hypothesis that the model is additive and that no interac-
tions exist among the independent variables (Tukey, 1949). A nonsignificant 
result, such as that found for this example, indicates that no interaction is 
required in the model.

The other tests included here are for the squared term of each independent 
variable. For example, given that the Test stat results for CTA.tot and 
BStotal are not significant, we can conclude that neither of these variables 
has a quadratic relationship with GPA. See Figure 1.1.

residualPlots(Model1.1)

	 Test stat	 Pr(>|t|)
CTA.tot	 0.607	 0.544
BStotal	 0.762	 0.447
Tukey test	 0.301	 0.764

The residualPlots command provides plots with the residuals on the 
y axes of the graphs, the values of each independent variable, respectively, 
on the x axes for the first two graphs, and the fitted values on x for the 
last graph. In addition, curves were fit linking the x and y axes for each 
graph.

The researcher would examine these graphs to assess two assumptions 
about the data. First, the assumption of homogeneity of variance can be 
checked through an examination of the residual by fitted plot. If the assump-
tion holds, this plot should display a formless cloud of data points with no 
discernible shapes that are equally spaced across all values of x. In addition, 
the linearity of the relationships between each independent variable and the 
dependent variable is assessed by an examination of the plots involving 
them. For example, it is appropriate to assume linearity for BStotal if the 
residual plots show no discernible pattern. This may be further explained by 
an examination of the fitted line. If this line is essentially flat, as is the case 
here, we can conclude that any relationship between BStotal and GPA is 
only linear.

In addition to linearity and homogeneity of variance, it is also impor-
tant  to determine whether the residuals follow a normal distribution 
as assumed in regression analysis. To check the normality of residual 
assumptions, QQ  plots (quantile–quantile plots) are typically used. 
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The qqPlot function from the car package may be used to easily create 
QQ plots of run regression models. Interpretation of the QQ plot is quite 
simple. Essentially, the graph displays the data as it actually is on the 
x axis and as it would be if normally distributed on the y axis. The indi-
vidual data points are represented in R by black circles. The solid line 
represents  the  data conforming perfectly to the normal distribution. 
Therefore, the closer the observed data (circles) are to the solid line, the 
more closely the data conforms to the normal distribution. In addition, 
R provides a 95% confidence interval for the line, so that when the data 
points fall within it they are deemed to conform to the normal distribu-
tion. In this example, the data appear to follow the normal distribution 
fairly closely.

qqPlot(Model1.1)
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FIGURE 1.1
Diagnostic residuals plots for regression model predicting GPA from CTA.tot and BStotal.
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Summary

Chapter 1 introduced readers to the basics of linear modeling using R. This 
treatment was purposely limited, as a number of good texts cover linear 
modeling and it is not the main focus of this book. However, many of the 
core concepts presented here for the GLM apply to multilevel modeling as 
well, and thus are of key importance as we move into more complex analyses. 
In addition, much of the syntactical framework presented here will reappear 
in subsequent chapters. In particular, readers should leave this chapter com-
fortable with interpretation of coefficients in linear models and the concept 
of variance in outcome variables. We would encourage you to return to this 
chapter frequently as needed to reinforce these basic concepts. In addition, 
we would recommend that you also refer to the appendix dealing with the 
basics of using R when questions about data management and installation 
of specific R libraries arise. In Chapter 2, we will turn our attention to the 
conceptual underpinnings of multilevel modeling before delving into esti-
mation in Chapters 3 and 4.
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2
Introduction to Multilevel Data Structure

2.1  Nested Data and Cluster Sampling Designs

In Chapter 1, we considered the standard linear model that underlies 
such common statistical methods as regression and analysis of variance 
(ANOVA; the general linear model). As noted, this model rests on several 
primary assumptions about the nature of the data in a population. Of par-
ticular importance in the context of multilevel modeling is the assumption 
of independently distributed error terms for the individual observations 
within a sample. This assumption essentially means that there are no 
relationships among individuals in the sample for the dependent variable 
once the independent variables in the analysis are accounted for. In the example 
described in Chapter 1, this assumption was indeed met, as the individ-
uals in the sample were selected randomly from the general population. 
Therefore, nothing linked their dependent variable values other than the 
independent variables included in the linear model. However, in many 
cases the method used for selecting the sample does create correlated 
responses among individuals. For example, a researcher interested in the 
impact of a new teaching method on student achievement may randomly 
select schools for placement in treatment or control groups. If school A is 
placed into the treatment condition, all students within the school will 
also be in the treatment condition. This is a cluster randomized design in 
that the clusters (and not the individuals) are assigned to a specific group. 
Furthermore, it would be reasonable to assume that the school itself, above 
and beyond the treatment condition, would have an impact on the per-
formances of the students. This impact would manifest as correlations in 
achievement test scores among individuals attending the school. Thus, if 
we were to use a simple one-way ANOVA to compare the achievement test 
means for the treatment and control groups with such cluster sampled data, 
we would likely violate the assumption of independent errors because a 
factor beyond treatment condition (in this case the school) would exert an 
additional impact on the outcome variable.

We typically refer to the data structure described above as nested, meaning 
that individual data points at one level (e.g., student) appear in only one level 
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of a higher level variable such as school. Thus, students are nested within 
school. Such designs can be contrasted with crossed data structures whereby 
individuals at the first level appear in multiple levels of the second variable. 
In our example, students may be crossed with after-school activities if they 
are allowed to participate in more than one. For example, a student might be 
on the basketball team and a member of the band.

The focus of this book is almost exclusively on nested designs that give 
rise to multilevel data. Another example of a nested design is a survey of 
job satisfaction levels of employees from multiple departments within a 
large business organization. In this case, each employee works within only 
a single division in the company, making possible a nested design. It seems 
reasonable to assume that employees working in the same division will 
have correlated responses on the satisfaction survey, because much of their 
views of their jobs will be based exclusively upon experiences within their 
divisions. For a third such example, consider the situation in which clients 
of several psychotherapists working in a clinic are asked to rate the qual-
ity of each therapy session. In this instance, three levels of data exist: (1) 
time in the form of an individual session, (2) client, and (3) therapist. Thus, 
session is nested in client, which in turn is nested in therapist. This data 
structure would be expected to lead to correlated scores on a therapy rating 
instrument.

2.2  Intraclass Correlation

In cases where individuals are clustered or nested within a higher level unit 
(e.g., classroom, school, school district), it is possible to estimate the correla-
tion among individuals’ scores within the cluster or nested structure using 
the intraclass correlation (ICC, denoted ρΙ in the population). The ρΙ is a 
measure of the proportion of variation in the outcome variable that occurs 
between groups versus the total variation present. It ranges from 0 (no vari-
ance among clusters) to 1 (variance among clusters but no within-cluster 
variance). ρΙ can also be conceptualized as the correlation for the dependent 
measure for two individuals randomly selected from the same cluster. It can 
be expressed as

	 I

2

2 2ρ = τ
τ + σ

	 (2.1)

where τ2 denotes population variance between clusters and σ2 indicates 
population variance within clusters. Higher values of ρΙ indicate that a 
greater share of the total variation in the outcome measure is associated 
with cluster membership; i.e., a relatively strong relationship among the 
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scores for two individuals from the same cluster. Another way to frame 
this issue is that individuals within the same cluster (e.g., school) are more 
alike on the measured variable than they are like individuals in other 
clusters.

It is possible to estimate τ2 and σ2 using sample data, and thus it is also 
possible to estimate ρΙ. Those familiar with ANOVA will recognize these 
estimates as related (though not identical) to the sum of squared terms. 
The sample estimate for variation within clusters is simply
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nj is the sample size of cluster j, N is the total sample size, and C is the total 
number of clusters. In other words, σ2 is simply the weighted average of 
within-cluster variances.

Estimation of τ2 involves a few more steps, but is not much more complex 
than what we have seen for σ2. To obtain the sample estimate for variation 
between clusters τ̂2, we must first calculate the weighted between-cluster 
variance:

	 S

n y y

n C
ˆ

1B

j j

j

C

2

2

1
∑ )(

)(=

−

−
=

�
	 (2.3)

where yj is the mean on response variables for cluster j and y is the overall 
mean on the response variable
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We cannot use as SB
2 a direct estimate of τ2 because it is impacted by the 

random variation among subjects within the same clusters. Therefore, in 
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order to remove this random fluctuation we will estimate the population 
between-cluster variance as

	 τ = − σ
�

S
n

ˆ
ˆ

B
2 2

2

	 (2.4)

Using these variance estimates, we can in turn calculate the sample estimate 
of ρΙ:

	 ρ = τ
τ + σ

ˆ
ˆ

ˆ ˆI

2

2 2 	 (2.5)

Note that Equation (2.5) assumes that the clusters are of equal size. Clearly, 
that will not always be the case, in which case this equation will not hold. 
However, the purpose for its inclusion here is to demonstrate the principle 
underlying the estimation of ρI, which holds even as the equation changes.

To illustrate estimation of ρI, let us consider the following data set. 
Achievement test data were collected from 10,903 third grade students nested 
within 160 schools. School enrollment sizes ranged from 11 to 143, with a 
mean size of 68.14. In this case, we will focus on the reading achievement 
test scores and use data from only five of the schools to make manual calcu-
lations easy to follow. First we will estimate σ̂2. To do so, we must estimate 
the variance in scores within each school. These values appear in Table 2.1. 
Using these variances and sample sizes, we can calculate σ̂2 as
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TABLE 2.1

School Size, Mean, and Variance of Reading Achievement Test

School N Mean Variance

767 58 3.952 5.298
785 29 3.331 1.524
789 64 4.363 2.957
815 39 4.500 6.088
981 88 4.236 3.362
Total 278 4.149 3.916
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The school means that are required for calculating SB
2, appear in Table 2.1 

as well. First we must calculate �n:
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Using this value, we can then calculate SB
2 for the five schools in our small 

sample using Equation (2.3):
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We can now estimate the population between-cluster variance τ2 using 
Equation (2.4):

	
− = − =0.140

3.9
53.7

0.140 0.073 0.067
	

We have now calculated all the parts needed to estimate ρI for the population,

	
ρ =

+
=ˆ 0.067

0.067 3.9
0.017I

	

This result indicates very little correlation of test scores within the schools. 
We can also interpret this value as the proportion of variation in the test 
scores accounted for by the schools. Since ρ̂I  is a sample estimate, we know 
that it is subject to sampling variation, which can be estimated with a stan-
dard error as in Equation (2.6):
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The terms in Equation (2.6) are as defined previously, and the assumption 
is that all clusters are of equal size. As noted earlier, this latter condition is 
not a requirement, however, and an alternative formulation exists for cases 
in which it does not hold. However, Equation (2.6) provides sufficient insight 
for our purposes into the estimation of the standard error of the ICC.

The ICC is an important tool in multilevel modeling, in large part because 
it indicates the degree to which a multilevel data structure may impact the 
outcome variable of interest. Larger ICC values are indicative of a greater 
impact of clustering. Thus, as the ICC increases in value, we must be more 
cognizant of employing multilevel modeling strategies in data analysis. 
In the next section, we will discuss the problems associated with ignoring 
this multilevel structure, before we turn our attention to methods for dealing 
with it directly.

2.3  Pitfalls of Ignoring Multilevel Data Structure

When researchers apply standard statistical methods to multilevel data 
such as the regression model described in Chapter 1, the assumption of 
independent errors is violated. For example, if we have achievement test 
scores from a sample of students who attend several different schools, it 
would be reasonable to believe that those attending the same school will 
have scores that are more highly correlated with one another than they are 
with scores from students at other schools. This within-school correlation 
would be due, for example, to a community, a common set of teachers, a com-
mon teaching curriculum, a single set of administrative policies, and other 
factors. The within-school correlation will in turn result in an inappropri-
ate estimate of the of the standard errors for the model parameters, which 
will lead to errors of statistical inference, such as p-values smaller than they 
should be and the resulting rejection of null effects above the stated Type I 
error rate for the parameters.

Recalling our discussion in Chapter 1, the test statistic for the null hypoth-
esis of no relationship between the independent and dependent variable is 
simply the regression coefficient divided by the standard error. An under-
estimation of the standard error will cause an overestimation of the test sta-
tistic, and thus the statistical significance for the parameter in cases where 
it should not be, that is, Type I errors at a higher rate than specified. Indeed, 
the underestimation of the standard error will occur unless τ2 is equal to 0.

In addition to the underestimation of the standard error, another problem 
with ignoring the multilevel structure of data is that we may miss impor-
tant relationships involving each level in the data. Recall our example of 
two levels of sampling: students (level 1) are nested in schools (level  2). 
Specifically, by not including information about the school, for example, 
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we may well miss important variables at the school level that may help 
explain performance at student level. Therefore, beyond the known prob-
lem with misestimating standard errors, we also develop an incorrect 
model for understanding the outcome variable of interest. In the context 
of multilevel linear models (MLMs), inclusion of variables at each level is 
relatively simple, as are interactions among variables at different levels. 
This greater model complexity in turn may lead to greater understanding 
of the phenomenon under study.

2.4  Multilevel Linear Models

In the following section we will review some of the core ideas that underlie 
MLMs. Our goal is to familiarize readers with terms that will repeat through-
out the book and explain them in a relatively nontechnical fashion. We will 
first focus on the difference between random and fixed effects, after which 
we will discuss the basics of parameter estimation, focusing on the two most 
commonly used methods, maximum likelihood and restricted maximum 
likelihood, and conclude with a review of assumptions underlying MLMs, 
and overview of how they are most frequently used, with examples. In this 
section, we will also address the issue of centering, and explain why it is an 
important concept in MLM. After reading the rest of this chapter, the reader 
will have sufficient technical background on MLMs to begin using the R 
software package for fitting MLMs of various types.

2.4.1  Random Intercept

As we transition from the one-level regression framework of Chapter 1 to the 
MLM context, let us first revisit the basic simple linear regression model of 
Equation (1.1)

	 y = β0 + β1x + ε	

Here, the dependent variable y is expressed as a function of an independent 
variable x, multiplied by a slope coefficient β1, an intercept β0, and random 
variation from subject to subject ε. We defined the intercept as the condi-
tional mean of y when the value of x is 0.

In the context of a single-level regression model such as this, one inter-
cept is common to all individuals in the population of interest. However, 
when individuals are clustered together in some fashion (e.g., students in 
classrooms and schools, organizational units within a company), there will 
potentially be a separate intercept for each cluster, that is, different means 
may exist for the dependent variable for x = 0 across the different clusters. 
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We say potentially here because the single intercept model of Equation (1.1) 
will suffice if there is no cluster effect. In practice, assessing the existence 
of different means across clusters is an empirical question described below. 
It  should also be noted that in this discussion we consider only the case 
where the intercept is cluster specific. It is also possible for β1 to vary by 
group or even other coefficients from more complicated models.

Allowing for group-specific intercepts and slopes leads to the following 
notation commonly used for the level 1 (micro) model in multilevel modeling

	 yij = β0j + β1jx + εij	 (2.7)

where the ij subscript refers to the ith individual in the jth cluster. We will 
begin our discussion of MLM notation and structure with the most basic 
multilevel model: predicting the outcome from only an intercept that we will 
allow to vary randomly for each group.

	 yij = β0j + εij	 (2.8)

Allowing the intercept to differ across clusters, as in Equation (2.8), leads to 
the random intercept that we express as

	 β0j = γ00 + U0j	 (2.9)

In this framework, γ00 represents an average or general intercept value that 
holds across clusters, whereas U0j is a group-specific effect on the intercept. 
We can think of γ00 as a fixed effect because it remains constant across all 
clusters, and U0j is a random effect because it varies from cluster to clus-
ter. Therefore, for a MLM we are interested not only in some general mean 
value for y when x is 0 for all individuals in the population (γ00), but also the 
deviation between the overall mean and the cluster-specific effects for the 
intercept (U0j).

If we go on to assume that the clusters constitute a random sample from 
the population of all such clusters, we can treat U0j as a kind of residual 
effect on yij, very similar to how we think of ε. In that case, U0j is assumed 
to be drawn randomly from a population with a mean of 0 (recall that U0j 
is a deviation from the fixed effect) and a variance τ2. Furthermore, we 
assume that τ2 and σ2, the variance of ε, are uncorrelated. We have already 
discussed τ2 and its role in calculating ρ̂I. In addition, τ2 can also be viewed 
as the impact of the cluster on the dependent variable, and therefore test-
ing it for statistical significance is equivalent to testing the null hypothesis 
that cluster (e.g., school) has no impact on the dependent variable. If we 
substitute the two components of the random intercept into the regression 
model, we get

	 y = γ00 + U0j + β1x + ε	 (2.10)
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Equation (2.10) is termed the full or composite model in which the multiple 
levels are combined into a unified equation. Often in MLM, we begin our 
analysis of a data set with this simple random intercept model known as the 
null model that takes the form

	 yij = γ00 + U0j + εij	 (2.11)

While the null model does not provide information about the impacts of spe-
cific independent variables on the dependent, it does yield important infor-
mation regarding how variation in y is partitioned between variance among 
the individual σ2 values and variance among the clusters τ2. The total vari-
ance of y is simply the sum of σ2 and τ2. In addition, as we have already seen, 
these values can be used to estimate ρI. The null model, as will be seen in 
later sections, is also used as a baseline for model building and comparison.

2.4.2  Random Slopes

It is a simple matter to expand the random intercept model in Equation (2.9) 
to accommodate one or more independent predictor variables. As an exam-
ple, if we add a single predictor (xij) at the individual level (Level 1) to the 
model, we obtain

	 yij = γ00 + γ10xij + U0j + εij	 (2.12)

This model can also be expressed in two separate levels:

	 Level 1: yij = β0j + β1jx + εij	 (2.13)

	 Level 2: β0j = γ00 + U0j	 (2.14)

	 β1j = γ10	 (2.15)

The model now includes the predictor and the slope relating it to the 
dependent variable γ10, which we acknowledge as being at Level 1 by the 
subscript  10. We interpret γ10 in the same way as β1 in the linear regres-
sion model, i.e., as a measure of the impact on y of a one-unit change in x. 
In addition, we can estimate ρI exactly as earlier although now it reflects the 
correlation between individuals from the same cluster after controlling for 
the independent variable, x. In this model, both γ10 and γ00 are fixed effects, 
while σ2 and τ2 remain random.

One implication of the model in Equation (2.12) is that the dependent 
variable is impacted by variations among individuals (σ2), variations 
among clusters (τ2), an overall mean common to all clusters (γ00), and the 
impact of the independent variable as measured by γ10, which is also com-
mon to all clusters.
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In practice, however, there is no reason that the impact of x on y must be 
common for all clusters. In other words, it is entirely possible that rather than 
having a single γ10 common to all clusters, there is actually a unique effect for 
the cluster of γ10 + U1j, where γ10 is the average relationship of x with y across 
clusters, and U1j is the cluster-specific variation of the relationship between 
the two variables. This cluster-specific effect is assumed to have a mean of 0 
and vary randomly around γ10. The random slopes model is

	 yij = γ00 + γ10xij + U0j + U1jxij+ εij	 (2.16)

Written in this way, we have separated the model into its fixed (γ00 + γ10xij) 
and random (U0j + U1jxij+ εij) components. The Equation (2.16) model simply 
indicates an interaction between cluster and x, such that the relationship of 
x and y is not constant across clusters.

Heretofore we discussed only one source of between-group variation, 
expressed as τ2, that serves as the variation among clusters in the inter-
cept. However, Equation (2.16) adds a second such source of between-group 
variance in the form of U1j, which indicates cluster variation on the slope 
relating the independent and dependent variables. To differentiate these 
two sources of between-group variance, we now denote the variance of U0j 
as τ0

2 and the variance of U1j as τ1
2. Furthermore, within clusters we expect 

U1j and U0j to have a covariance of τ01. However, across different clusters, 
these terms should be independent of one another, and in all cases it is 
assumed that ε remains independent of all other model terms. In practice, 
if we find that τ1

2 is not 0, we must be careful in describing the relationship 
between the independent and dependent variables, as it is not the same for 
all clusters.

We will revisit this idea in subsequent chapters. For the moment, however, 
it is most important to recognize that variation in the dependent variable 
y  can be explained by several sources, some fixed and others random. 
In practice, we will most likely be interested in estimating all of these sources 
of variability in a single model.

As a means for further understanding the MLM, let us consider a simple 
example using the five schools described above. In this context, we are inter-
ested in treating a reading achievement test score as the dependent vari-
able and a vocabulary achievement test score as the independent variable. 
Remember that students are nested within schools so that a simple regres-
sion analysis is not appropriate. To understand the issue being estimated in 
the context of MLM, we can obtain separate intercept and slope estimates for 
each school as shown in Table 2.2.

Since the schools are of the same sample size, the estimate of γ00, the 
average intercept value is 2.359, and the estimate of the average slope value 
γ10 is 0.375. Notice that for both parameters, the school values deviate from 
these means. For example, the intercept for school 1 is 1.230. The –1.129 
difference between this value and 2.359 is U0j for that school. Similarly, the 



33Introduction to Multilevel Data Structure

difference between the average slope value of 0.375 and the slope for school 
1, 0.552 is 0.177, which is U1j for the school. Table 2.2 includes U0j and U1j 
values for each school. The differences in slopes also provide informa-
tion about the relationship between vocabulary and reading test scores. 
This relationship was positive for all schools, meaning that students who 
scored higher on vocabulary also scored higher on reading. However, the 
strength of this relationship was weaker for school 2 than for school 1, as 
an example.

Based on the values in Table 2.2, it is also possible to estimate the vari-
ances associated with U1j and U0j, τ1

2 and τ0
2, respectively. Again, because the 

schools in this example had the same numbers of students, the calculation of 
these variances is a straightforward matter, using

	
U U
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for the slopes and an analogous equation for the intercept random vari-
ance. We obtain 0.4390

2τ =  and 0.0161
2τ = . In other words, much more of 

the variance in the dependent variable is accounted for by variation in the 
intercepts at school level than is accounted for by variation in the slopes. 
Another way to think of this result is that the schools exhibited greater dif-
ferences among one another in the mean level of achievement as compared 
to differences in the impacts of x on y.

The practice of obtaining these variance estimates using the R environ-
ment for statistical computing and graphics and interpreting their mean-
ing are subjects for upcoming chapters. Before discussing the practical 
“nuts and bolts” of conducting this analysis, we first examine the basics for 
estimating parameters in the MLM framework using maximum likelihood 
and restricted maximum likelihood algorithms. While similar in spirit to 
the simple calculations demonstrated above, they are different in practice 
and will yield somewhat different results from those obtained using least 
squares as above. First, one more issue warrants our attention as we consider 
the use of MLM, namely variable centering.

TABLE 2.2

Intercept and Slope Estimates of Multilevel Linear Model

School Intercept U j00 Slope U j11

1 1.230 –1.129 0.552 0.177
2 2.673 0.314 0.199 –0.176
3 2.707 0.348 0.376 0.001
4 2.867 0.508 0.336 –0.039
5 2.319 –0.040 0.411 0.036
Overall 2.359 0.375
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2.4.3  Centering

Centering is simply the practice of subtracting the mean of a variable from 
each individual value. This implies the mean for the sample of the centered 
variables is 0 and also that each individual’s (centered) score represents a 
deviation from the mean rather than representing the meaning of its raw 
value. In the context of regression, centering is commonly used, for example, 
to reduce collinearity caused by including an interaction term in a regression 
model. If the raw scores of the independent variables are used to calculate 
the interaction and both the main effects and interaction terms are included 
in the subsequent analysis, it is very likely that collinearity will cause prob-
lems in the standard errors of the model parameters. Centering is a way to 
help avoid such problems (Iversen, 1991).

Such issues are also important to consider in MLM, in which interactions 
are frequently employed. In addition, centering is also a useful tool for avoid-
ing collinearity caused by highly correlated random intercepts and slopes 
in MLMs (Wooldridge, 2004). Finally, centering provides a potential advan-
tage in terms of interpretation of results. Remember from our discussion 
in Chapter 1 that the intercept is the value of the dependent variable when 
the independent variable is set to 0. In many applications (e.g., a measure of 
vocabulary), the independent variable cannot reasonably be 0. This essen-
tially renders the intercept as a necessary value for fitting the regression line 
but not one that has a readily interpretable value. However, when x has been 
centered, the intercept takes on the value of the dependent variable when 
the independent is at its mean. This is a much more useful interpretation for 
researchers in many situations, and yet another reason why centering is an 
important aspect of modeling, particularly in the multilevel context.

Probably the most common approach to centering is to calculate the differ-
ence between each individual’s score and the overall, or grand mean across the 
entire sample. This grand mean centering is certainly the most commonly used 
method in practice (Bickel, 2007). It is not, however, the only manner of cen-
tering data. An alternative approach known as group mean centering involves 
calculating the difference between each individual score and the mean of 
the cluster to which it belongs. In our school example, grand mean centering 
would involve calculating the difference between each score and the overall 
mean across schools, while group mean centering would lead the researcher 
to calculate the difference between each score and the mean for the school.

While the literature indicates some disagreement regarding which 
approach may be best for reducing the harmful effects of collinearity (Bryk 
& Raudenbush, 2002; Snijders & Bosker, 1999), researchers demonstrated 
that either technique will work well in most cases (Kreft, de Leeuw, & 
Aiken, 1995). Therefore, the choice of which approach to use must be made 
on substantive grounds regarding the nature of the relationship between x 
and y. By using grand mean centering, we implicitly compare individuals 
to one another (in the form of the overall mean) across an entire sample. 
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On the other hand, group mean centering places each individual in relative 
position on x within his or her cluster. In our school example, using the group 
mean centered values of vocabulary in the analysis would mean that we are 
investigating the relationship between a student’s relative vocabulary score 
in his or her school and his or her reading score. In contrast, the use of grand 
mean centering would examine the relationship between a student’s relative 
standing in the sample as a whole on vocabulary and the reading score. This 
latter interpretation would be equivalent conceptually (but not mathemati-
cally) to using the raw score, while the group mean centering would not.

Throughout the rest of this book, we will use grand mean centering by 
default based on recommendations by Hox (2002), among others. At times, 
however, we will also demonstrate the use of group mean centering to illus-
trate how it provides different results and for applications in which interpreta-
tion of the impact of an individual’s relative standing in his or her cluster may 
be more useful than the individual’s relative standing in the sample as a whole.

2.5  Basics of Parameter Estimation with MLMs

Heretofore, our discussions of estimation of model parameters have been 
in the context of least squares—a technique that provides underpinnings 
of ordinary least squares (OLS) and related linear models. However, as we 
move from these fairly simple applications to more complex models, OLS 
is not typically the optimal approach for parameter estimation. Instead, we 
will rely on maximum likelihood estimation (MLE) and restricted maximum 
likelihood (REML). In the following sections, we review these approaches to 
estimation from a conceptual view, focusing generally on how they work, 
what they assume about the data, and how they differ from one another. For 
the technical details we refer interested readers to Bryk and Raudenbush 
(2002) and de Leeuw and Meijer (2008), both of which are excellent resources 
for those desiring more in-depth coverage of these methods. Our purpose 
here is to provide readers with a conceptual understanding that will aid 
their application of MLM techniques in practice.

2.5.1  Maximum Likelihood Estimation

MLE has as its primary goal the estimation of population model parameters 
that maximize the likelihood of obtaining the sample that we in fact obtained. 
In other words, the estimated parameter values should maximize the likeli-
hood of our particular sample. From a practical perspective, identifying such 
sample values takes place by a comparison of the observed data with data 
predicted by the model associated with the parameter values. The closer the 
observed and predicted values are to one another, the greater the likelihood 
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that the observed data arose from a population with parameters close to 
those used to generate the predicted values. In practice, MLE is an iterative 
methodology in which the algorithm searches for parameter values that will 
maximize the likelihood of the observed data (i.e., produce predicted values 
that are as close as possible to observed values). MLE may be computation-
ally intensive, particularly for complex models and large samples.

2.5.2  Restricted Maximum Likelihood Estimation

A variant of MLE known as restricted maximum likelihood estimation 
(REML) has proven more accurate than MLE for estimating variance param-
eters (Kreft & De Leeuw, 1998). In particular, the two methods differ with 
respect to calculating degrees of freedom in estimating variances. As a sim-
ple example, a sample variance is calculated typically by dividing the sum of 
squared differences between individual values and the mean by the number 
of observations minus 1 to yield an unbiased estimate. This is a REML esti-
mate of variance.

In contrast, the MLE variance is calculated by dividing the sum of squared 
differences by the total sample size, leading to a smaller variance estimate 
than REML and, in fact, one biased in finite samples. In the context of mul-
tilevel modeling, REML accounts for the number of parameters being esti-
mated in a model when determining the appropriate degrees of freedom 
for the estimation of the random components such as the parameter vari-
ances described above. In contrast, MLE does not account for these, leading 
to an underestimate of the variances that does not occur with REML. For this 
reason, REML is generally the preferred method for estimating multilevel 
models, although for testing variance parameters (or any random effect), it is 
necessary to use MLE (Snijders & Bosker, 1999). We should note that as the 
number of Level 2 clusters increases, the difference in value for MLE and 
REML estimates becomes very small (Snijders & Bosker, 1999).

2.6  Assumptions Underlying MLMs

As with any statistical model, the appropriate use of MLMs requires that 
several assumptions about the data hold true. If these assumptions are not 
met, the model parameter estimates may not be trustworthy, as would be 
the case with standard linear regression reviewed in Chapter 1. Indeed, 
while the assumptions for MLM differ somewhat from those for single-level 
models, the assumptions underlying MLM are akin to those for the simpler 
models. This section introduces these assumptions and their implications for 
researchers using MLMs. In subsequent chapters, we describe methods for 
checking the validity of these assumptions for given sets of data.
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First, we assume that the Level 2 residuals are independent between 
clusters. In other words, the assumption is that the random intercept and 
slope(s) at Level 2 are independent of one another across clusters. Second, 
the Level 2 intercepts and coefficients are assumed to be independent of the 
Level 1 residuals, i.e., errors for the cluster-level estimates are unrelated to 
errors at the individual level. Third, the Level 1 residuals are normally dis-
tributed and have constant variances. This assumption is very similar to 
the one we make about residuals in the standard linear regression model. 
Fourth, the Level 2 intercept and slope(s) have a multivariate normal dis-
tribution with a constant covariance matrix. Each of these assumptions can 
be directly assessed for a sample, as we shall see in forthcoming chapters. 
Indeed, the methods for checking the MLM assumptions are similar to those 
for checking the regression model that we used in Chapter 1.

2.7  Overview of Two-Level MLMs

We have described the specific terms of MLM, including the Level 1 and Level 
2 random effects and residuals. We will close this chapter about MLMs by 
considering examples of two- and three-level MLMs and the use of MLMs 
with longitudinal data. This discussion should prepare the reader for subse-
quent chapters covering applications of R to the estimations of specific MLMs.

First, we consider the two-level MLM, parts of which we described earlier 
in this chapter. In Equation (2.16), we considered the random slopes model

	 yij = γ00 + γ10xij + U0j + U1jxij+ εij	

in which the dependent variable yij (reading achievement) was a function of 
an independent variable xij (vocabulary test score) and also random error at 
both the student and school levels. We can extend this model a bit further 
by including multiple independent variables at both Level 1 (student) and 
Level 2 (school). Thus, for example, in addition to ascertaining the relation-
ship between an individual’s vocabulary and reading scores, we can also 
determine the degree to which the average vocabulary score at the school 
as a whole is related to an individual’s reading score. This model essentially 
has two parts: (1) one explaining the relationship between the individual 
level vocabulary (xij) and reading and (2) one explaining the coefficients at 
Level 1 as a function of the Level 2 predictor or average vocabulary score (zj). 
The two parts of this model are expressed as

	 Level 1: yij = β0j + β1jxij + εij	 (2.18)

	 Level 2: βhj = γh0 + γh1zj + Uhj	 (2.19)
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The additional piece of Equation (2.19) is γh1zj, which represents the slope for 
(γh1), and value of the average vocabulary score for the school (zj). In other 
words, the mean school performance is related directly to the coefficient 
linking the individual vocabulary score to the individual reading score. For 
our specific example, we can combine Equations (2.18) and (2.19) to yield a 
single equation for the two-level MLM.

	 yij = γ00 + γ10xij + γ01zj + γ1001xijzj + U0j + U1jxij + εij	 (2.20)

Each of these model terms has been defined previously in this chapter: γ00 is 
the intercept or grand mean for the model, γ10 is the fixed effect of variable 
x (vocabulary) on the outcome, U0j represents the random variation for the 
intercept across groups, and U1j represents the random variation for the 
slope across groups.

The additional pieces of Equation (2.13) are γ01 and γ11. The γ01 represents 
the fixed effect of Level 2 variable z (average vocabulary) on the outcome and 
γ11 represents the slope for and value of the average vocabulary score for the 
school. The new term in Equation (2.20) is the cross-level interaction γ1001xijzj. 
As the name implies, the cross-level interaction is simply an interaction of 
Level 1 and Level 2 predictors. In this context, it represents the interaction 
between an individual’s vocabulary score and the mean vocabulary score 
for his or her school. The coefficient for this interaction term, γ1001, assesses 
the extent to which the relationship between a student’s vocabulary score is 
moderated by the mean for the school attended. A large significant value for 
this coefficient would indicate that the relationship between an individual’s 
vocabulary test score and overall reading achievement is dependent on the 
level of vocabulary achievement at his or her school.

2.8  Overview of Three-Level MLMs

It is entirely possible to utilize three or more levels of data structures with 
MLMs. We should note, however, that four-level and larger models are rare 
in practice. For our reading achievement data in which the second level was 
school, a possible third level might be the district in which the school is 
located. In that case, we would have multiple equations to consider when 
expressing the relationship between vocabulary and reading achievement 
scores, starting at the individual level:

	 yijk = β0jk + β1jkxijk + εijk	 (2.21)

The subscript k represents the Level 3 cluster to which the individual 
belongs.
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Before formulating the rest of the model, we must evaluate whether the 
slopes and intercepts are random at both Levels 2 and 3 or only at Level 1, for 
example. This decision should always be based on the theory surrounding 
the research questions, what is expected in the population, and what is 
revealed in the empirical data. We will proceed with the remainder of this 
discussion under the assumption that the Level 1 intercepts and slopes are 
random for both Levels 2 and 3 in order to provide a complete description 
of the most complex model possible when three levels of data structure are 
present. When the Level 1 coefficients are not random at both levels, the 
terms in the following models for which this randomness is not present 
would simply be removed. We will address this issue more specifically in 
Chapter 4 when we discuss the fitting of three-level models using R. The 
Level 2 and Level 3 contributions to the MLM described in Equation (2.13) 
appear below.

	 Level 2: β0jk = γ00k + U0jk

	 β1jk = γ10k + U1jk

	 Level 3: γ00k = δ000 + V00k

	 γ10k = δ100 + V10k	 (2.22)

We can then use simple substitution to obtain the expression for the Level 1 
intercept and slope in terms of both Level 2 and Level 3 parameters.

	 β0jk = δ000 + V00k + U0jk

	 β1jk = δ100 + V10k+ U1jk	 (2.23)

In turn, these terms may be substituted into Equation (2.15) to provide the 
full three-level MLM.

	 yijk = δ000 + V00k + U0jk + (δ100 + V10k+ U1jk)xijk + εijk	 (2.24)

There is an implicit assumption in this expression of Equation (2.24) that 
there are no cross-level interactions, although they certainly may be mod-
eled across all three levels or for any pair of levels. Equation (2.24) expresses 
individuals’ scores on the reading achievement test as a function of random 
and fixed components from the school they attend, the district in which the 
school is located, and their own vocabulary test scores and random varia-
tions associated only with them. Although not included in Equation (2.24), it 
is also possible to include variables at both Levels 2 and 3, similar to what we 
described for the two-level model structure.
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2.9 � Overview of Longitudinal Designs and 
Their Relationship to MLMs

Finally, we will briefly explain how longitudinal designs can be expressed 
as MLMs. Longitudinal research designs simply involve the collection of 
data from the same individuals at multiple points in time. For example, we 
may have reading achievement scores for students tested in the fall and 
spring of the school year. With such a design, we would be able to investi-
gate aspects of growth scores and changes in achievements over time. Such 
models can be placed in the context of an MLM where the student repre-
sents the Level 2 (cluster) variable, and the individual test administration is 
at Level 1. We would then simply apply the two-level model described above, 
including student-level variables that are appropriate for explaining reading 
achievement. Similarly, if students are nested within schools, we would have 
a three-level model, with school serving as the third level. We could apply 
Equation (2.24) again with whichever student- or school-level variables were 
pertinent to the research question.

One unique aspect of fitting longitudinal data into the MLM context is that 
the error terms can potentially take specific forms that are not common in 
other applications of multilevel analysis. These error terms reflect the way in 
which measurements made over time relate to one another and are typically 
more complex than the basic error structure described thus far. In Chapter 
5, we will consider examples of fitting such longitudinal models with R and 
focus our attention on these error structures—when each is appropriate 
and how they are interpreted. In addition, such MLMs need not take linear 
forms. They may be adapted to fit quadratic, cubic, or other nonlinear trends 
over time. These issues will be discussed further in Chapter 5.

Summary

The goal of this chapter was to introduce the basic theoretical underpinnings 
of multilevel modeling, but not to provide an exhaustive technical discus-
sion of these issues. A number of useful resources can provide comprehen-
sive details and are listed in the references at the end of the book. However, 
the information in this chapter should be adequate as we move forward with 
multilevel modeling using R software. We recommend that you make liberal 
use of the information provided here while reading subsequent chapters. 
This should provide you with a complete understanding of the output gener-
ated by R that we will be examining. In particular, when interpreting output 
from R, it may be helpful for you to return to this chapter to review precisely 
what each model parameter means.



41Introduction to Multilevel Data Structure

In the next two chapters, we will take the theoretical information from 
this chapter and apply it to real data sets using two different R libraries, 
nlme and lme4, both of which were developed for conducting multilevel 
analyses with continuous outcome variables. In Chapter 5, we will examine 
how these ideas can be applied to longitudinal data. Chapters 7 and 8 will 
discuss multilevel modeling for categorical dependent variables. In Chapter 
9, we will diverge from the likelihood-based approaches described here and 
explain multilevel modeling within the Bayesian framework, focusing on 
applications and learning when this method may be appropriate and when 
it may not.





43

3
Fitting Two-Level Models in R

In the previous chapter, the multilevel modeling approach to analysis of 
nested data was introduced along with relevant notations and definitions 
of random intercepts and coefficients. We will devote this chapter to the 
introduction of the R packages for fitting multilevel models. In Chapter 1, 
we provided an overview of the lm() function for linear regression 
models. As will become apparent, the estimation of multilevel models in 
R is very similar to estimating single-level linear models. After providing 
a brief discussion of the two primary R packages for fitting multilevel 
models for continuous data, we will devote the remainder of the chapter 
to extended examples applying the principles introduced in Chapter  2 
using R.

3.1  Packages and Functions for Multilevel Modeling in R

Currently, the two main R libraries for devising multilevel models are 
nlme and lme4, both of which can be used for fitting basic and advanced 
multilevel models. The lme4 package is slightly newer and provides 
a more concise syntax and more flexibility. Using the nlme package, 
the  function call for continuous outcome multilevel models that are lin-
ear  in their parameters is lme(), whereas the function call in lme4 is 
lmer().

In the following sections of this chapter, we will demonstrate and provide 
examples of using these two packages to run basic multilevel models in R. 
Following is the basic syntax for these two functions. Details regarding their 
use and various options will be provided in the examples.

lme(fixed, data, random, correlation, weights, subset, method,
	 na.action, control, contrasts = NULL, keep.data = TRUE)

lmer(formula, data, family = NULL, REML = TRUE,
	 control = list(), start = NULL, verbose = FALSE,
	 doFit = TRUE, subset, weights, na.action, offset,
	 contrasts = NULL, model = TRUE, x = TRUE,...)

For simple linear multilevel models, the only necessary R subcommands 
for the functions are the formula (consisting of fixed and random effects) 
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and data. The remaining subcommands can be used to customize models 
and to provide additional output. This chapter focuses first on defining 
simple multilevel models and then demonstrates options for model cus-
tomization and assumption checking.

3.2  The nlme Package

3.2.1  Simple (Intercept Only) Multilevel Models Using nlme

To demonstrate the use of R for fitting multilevel models, we return to the 
example introduced in Chapter 2. Specifically, a researcher wants to deter-
mine the extent to which vocabulary scores can be used to predict general 
reading achievement. Since students were nested within schools, standard 
linear regression models are not appropriate. In this case, school is a random 
effect and vocabulary scores are fixed. The first model that we will fit is the 
null model that has no independent variable. This model is useful for obtain-
ing estimates of the residual and intercept variance when only the clustering 
by school is considered, as in Equation (2.11). The lme syntax necessary for 
estimating the null model appears below.

Mo�del3.0 <- lme(�fixed = geread~1, random = ~1|school, data = 
Achieve)

We can obtain output from this model by typing summary(Model3.0).

Linear mixed-effects model fit by REML
	Data: Achieve
	 AIC	 BIC	 logLik
	 46274.31	 46296.03	 -23134.15

Random effects:
	Formula: ~1 | school
	 (Intercept)	Residual
StdDev:	 0.6257119	 2.24611

Fixed effects: geread ~ 1
	 Value	 Std.Error	 DF	 t-value	 p-value
(Intercept)	4.306753	 0.05497501	 10160	 78.3402	 0

Standardized Within-Group Residuals:
	 Min	 Q1	 Med	 Q3	 Max
-2.3229469	 -0.6377948	-0.2137753	 0.2849664	 3.8811630

Number of Observations: 10320
Number of Groups: 160
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Although this is a null model in which there is no independent variable, 
it provides some useful information that will help us understand the struc-
ture of the data. In particular, the AIC and BIC values that are of primary 
interest in this case will be useful in comparing this model with others that 
include one or more independent variables, as we will see below. In addition, 
the null model also provides estimates of the variance among the individu-
als σ2 and among the clusters τ2. In turn, these values can be used to estimate 
ρΙ (ICC), as in Equation (2.5). Here, the value would be

	 ˆ 0.6257119
0.6257119 2.24611

0.2178797lρ =
+

=

We interpret this value to mean that the correlation of reading test scores 
among students within the same schools is 0.22 if we round our result. 
To fit the model with vocabulary as the independent variable using lme, we 
submit the following syntax in R.

Model3.1 <- lme(�fixed = geread~gevocab, random = ~1|school, 
data = Achieve)

In the first part of the function call, we define the formula for the model fixed 
effects, very similar to model definition of linear regression using lm(). The 
statement fixed = geread~gevocab essentially says that the reading score 
is predicted with the vocabulary score fixed effect. The random part of the 
function call defines the random effects and the nesting structure. If only a 
random intercept is desired, the syntax for the intercept is 1. In this example, 
random = ~1|school indicates that only a random intercepts model will be 
used and that the random intercept varies within school. This corresponds 
to the data structure of students nested within schools. Fitting this model, 
which is saved in the output object Model3.1, we obtain the following out-
put by inputting the name of the output object.

Model3.1
Linear mixed-effects model fit by REML
	Data: Achieve
	Log-restricted-likelihood: -21568.6
	Fixed: geread ~ gevocab
(Intercept)	 gevocab
	 2.0233559	 0.5128977

Random effects:
	Formula: ~1 | school
	 (Intercept)	 Residual
StdDev: 0.3158785	 1.940740

Number of Observations: 10320
Number of Groups: 160



46 Multilevel Modeling Using R

Output from the lme() function provides parameter estimates for the fixed 
effects and standard deviations for the random effects along with a summary 
of the number of Level 1 and Level 2 units in the sample. As with the output 
from the lm() function, however, the output from the lme() function provides 
limited information. If we desire more detailed information about the model, 
including significance tests for parameter estimates and model fit statistics, 
we can request a model summary. The summary() command will provide 
the following:

summary(Model3.1)
Linear mixed-effects model fit by REML
	Data: Achieve
	 AIC	 BIC	 logLik
	 43145.2	 43174.17	 -21568.6

Random effects:
	Formula: ~1 | school
	 (Intercept)	Residual
StdDev:	 0.3158785	1.940740

Fixed effects: geread ~ gevocab
	 Value	 Std.Error	 DF	 t-value	p-value
(Intercept)	2.0233559	 0.04930868	10159	 41.03447	 0
gevocab	 0.5128977	 0.00837268	10159	 61.25850	 0

Correlation:
	 (Intr)
gevocab	 -0.758

Standardized Within-Group Residuals:
	 Min	 Q1	 Med	 Q3	 Max
-3.0822506	 -0.5734728	-0.2103488	 0.3206692	 4.4334337

Number of Observations: 10320
Number of Groups: 160

From this summary we obtain AIC, BIC, and log likelihood information that 
can be used for model comparisons in addition to parameter significance 
tests. We can also obtain a correlation between the fixed effect slope and 
the fixed effect intercept as well as a brief summary of the model residu-
als including the minimum, maximum, and first, second (median, denoted 
Med), and third quartiles.

The correlation of the fixed effects represents the estimated correlation 
if we had repeated samples of the two fixed effects (i.e., the intercept and 
slope for gevocab). Often this correlation is not particularly interesting. 
From this output, we can see that gevocab is a significant predictor of 
geread (t = 61.258, p < 0.05), and that as vocabulary score increases by 
1 point, reading ability increases by 0.513 points. We can compare the fit 
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for this model with that of the null model by referring to the AIC and BIC 
statistics. Recall that smaller values reflect better model fit. For Model 3.1, 
the AIC and BIC are 43145.2 and 43174.17, respectively. For Model 3.0, the 
AIC and BIC were 46274.31 and 46296.03. Because the values for both sta-
tistics are smaller for Model 3.1, we would conclude that it provides a 
better fit to the data. Substantively, this means that we should include the 
predictor variable geread, which the results of the hypothesis test also 
supported.

In addition to the fixed effects in Model 3.1, we can also ascertain 
how much variation in geread is present across schools. Specifically, 
the output shows that after accounting for the impact of gevocab, the 
estimate of variation in intercepts across schools is 0.3158785, while the 
within-school variation is estimated as 1.940740. We can tie these num-
bers directly back to our discussion in Chapter 2 where 0

2τ  = 0.3158785 
and σ2 = 1.940740. In addition, the overall fixed intercept denoted as γ00 in 
Chapter 2 is 2.0233559, which is the mean of geread when the gevocab 
score is 0.

Finally, it is possible to estimate the proportion of variance in the outcome 
variable accounted for at each level of the model. In Chapter 1, we saw that 
with single-level OLS regression models, the proportion of response variable 
variance accounted for by the model is expressed as R2. In the context of 
multilevel modeling, R2 values can be estimated for each level of the model 
(Snijders & Bosker, 1999). For Level 1, we can calculate
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This result tells us that Level 1 of Model 3.1 explains approximately 21% of 
the variance in the reading score above and beyond that accounted for in the 
null model. We can also calculate a Level 2 R2 value:
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where B is the average size of the Level 2 units (schools in this case). R pro-
vides the number of individuals in the sample (10320) and the number of 
schools (160) so that we can calculate B as 10320/160 = 64.5. We can now 
estimate
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The model in the previous example was quite simple and incorpo-
rated only a single Level 1 predictor. In many applications, researchers 
utilize predictor variables at both Level 1 (student) and Level 2 (school). 
Incorporation of predictors at higher levels of analysis is straightfor-
ward in R and is handled in exactly the same manner as incorporation 
of Level 1 predictors. For example, let us assume that in addition to a 
student’s vocabulary test performance, a researcher also wants to deter-
mine whether school enrollment size (senroll) also produces a statisti-
cally significant impact on overall reading score. In that instance, adding 
the  school  enrollment Level 2 predictor would result in the following 
R syntax:

Model3.2 <- lme(�fixed = geread~gevocab + senroll, random = 
~1|school, data = Achieve)

summary(Model3.2)
Linear mixed-effects model fit by REML
	Data: Achieve
	 AIC	 BIC	 logLik
	 43162.1	 43198.31	-21576.05

Random effects:
Formula: ~1 | school
	 (Intercept) Residual
StdDev: 0.3167654 1.940760

Fixed effects: geread ~ gevocab + senroll
	 Value	 Std.Error	 DF	 t-value	 p-value
(Intercept)	2.0748819	 0.11400758	 10159	 18.19951	 0.0000
gevocab	 0.5128708	 0.00837340	 10159	 61.25000	 0.0000
senroll	 -0.0001026	 0.00020511	   158	 -0.50012	 0.6177

Correlation:
	 (Intr)	 gevocb
gevocab	 -0.327
senroll	 -0.901	 -0.002
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Standardized Within-Group Residuals:
	 Min	 Q1	 Med	 Q3	 Max
-3.0834462	 -0.5728938	-0.2103480	 0.3212091	 4.4335881

Number of Observations: 10320
Number of Groups: 160

Note that in this specific function call, senroll, is included only in the 
fixed part of the model and not in the random part. This variable thus has 
only a fixed (average) effect and is the same across all schools. We will see 
shortly how to incorporate a random coefficient in this model.

From these results we can see that enrollment did not have a statistically 
significant relationship with reading achievement. In addition, notice some 
minor changes in the estimates of the other model parameters and a fairly large 
change in the correlation between the fixed effect of gevocab slope and the 
fixed effect of the intercept. The slope for senroll and intercept were strongly 
negatively correlated and the slopes of the fixed effects exhibited virtually no 
correlation. As noted earlier, these correlations are typically not very helpful 
for explaining the dependent variable and are rarely discussed in any detail in 
reports of analysis results. The R2 values for Levels 1 and 2 appear below.
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3.2.2  Random Coefficient Models Using nlme

In Chapter 2, we described the random coefficients model in which the 
impact of the independent variable on the dependent is allowed to vary 
across the Level 2 effects. In the context of the current research problem, 
this would mean that we allow the impact of gevocab on geread to vary 
from one school to another. Incorporating such random coefficient effects 
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into a multilevel model using lme occurs in the random part of the model 
syntax. When defining random effects, as mentioned above, 1 stands for 
the intercept, so that if all we desire is a random intercepts model as in the 
previous example, the syntax ~1|school is sufficient. If, however, we want 
to allow a Level 1 slope to vary randomly, we will change this part of the syn-
tax (recall that gevocab is already included in the fixed part of the model). 
Let us return to the Model 3.1 scenario, but this time allow both the slope 
and intercept for gevocab to vary randomly from one school to another. 
The syntax for this model would now become

Model3.3 <- lme(�fixed = geread~gevocab, random = 
~gevocab|school, data = Achieve)

This model differs from Model 3.1 only in that the 1 in the random line is 
replaced by the variable name whose effect we want to be random. Notice 
that we no longer explicitly state a random intercept in the specification. 
After a random slope is defined, the random intercept becomes implicit so 
we no longer need to specify it (i.e., it is included by default). If we do not 
want the random intercept while modeling the random coefficient, we would 
include a –1 immediately prior to gevocab. The random slope and intercept 
syntax will generate the following model summary:

summary(Model3.3)
Linear mixed-effects model fit by REML
	Data: Achieve
	 AIC	 BIC	 logLik
	 43004.85	 43048.3	 -21496.43

Random effects:
Formula: ~gevocab | school
Structure: �General positive-definite, Log-Cholesky 

parametrization
	 StdDev	 Corr
(Intercept)	 0.5316640	 (Intr)
gevocab	 0.1389372	 -0.858
Residual	 1.9146629

Fixed effects: geread ~ gevocab
	 Value	 Std.Error	 DF	 t-value	 p-value
(Intercept)	 2.0057073	 0.06108846	 10159	 32.83283	 0
gevocab	 0.5203554	 0.01441502	 10159	 36.09815	 0
	Correlation:
	 (Intr)
gevocab -0.866

Standardized Within-Group Residuals:
	 Min	 Q1	 Med	 Q3	 Max
-3.7101835	 -0.5674382	 -0.2074307	 0.3176354	 4.6774104
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Number of Observations: 10320
Number of Groups: 160

An examination of the results shows that gevocab is statistically signifi-
cantly related to geread across schools. The estimated coefficient 0.5203554 
corresponds to γ10 from Chapter 2, and is interpreted as the average impact of 
the predictor on the outcome across schools. In addition, the value 0.1389372 
represents the estimate of 1

2τ  from Chapter 2, and reflects the variation in coef-
ficients across schools. A relatively larger value of this estimate indicates that 
the coefficient varies from one school to another; i.e., the relationship of the 
independent and dependent variables differs across schools. As before, we also 
have the estimates of 0

2τ  (0.5316640) and σ2 (1.9146629). Taken together these 
results show that the largest source of random variation in geread is variation 
among students within schools, with lesser variation from differences in the 
conditional mean (intercept) and coefficient for gevocab across schools.

A model with two random slopes can be defined in much the same way 
as defining a single slope. As an example, suppose a researcher is interested 
in determining whether the age of a student also impacts reading perfor-
mance, and wants to allow this effect to vary from one school to another. 
Such incorporation of two random slopes can be modeled as:

Model3.4 <- lme(fixed = geread~gevocab + age,
	 random = ~gevocab + age|school, data = Achieve)

summary(Model3.4)
Linear mixed-effects model fit by REML
	Data: Achieve
	 AIC	 BIC	 logLik
	 43015.77	 43088.18	 -21497.88

Random effects:
Formula: ~gevocab + age | school
Structure: �General positive-definite, Log-Cholesky 

parametrization
	 StdDev	 Corr
(Intercept)	 0.492561805	 (Intr)	gevocb
gevocab	 0.137974552	 -0.073
age	 0.006388612	 -0.649	-0.601
Residual	 1.914030323

Fixed effects: geread ~ gevocab + age
	 Value	 Std.Error	 DF	 t-value	 p-value
(Intercept)	 2.9614102	 0.4151894	 10158	 7.13267	 0.0000
gevocab	 0.5191491	 0.0143562	 10158	 36.16205	 0.0000
age	 -0.0088390	 0.0038396	 10158	 -2.30208	 0.0214
Correlation:
	 (Intr) gevocb
gevocab	-0.095
age	 -0.989 -0.032
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Standardized Within-Group Residuals:
	 Min	 Q1	 Med	 Q3	 Max
-3.6805437	 -0.5686992	 -0.2091111	 0.3180592	 4.6850568

Number of Observations: 10320
Number of Groups: 160

Here we see that age is significantly related to geread (p = 0.0214), with a 
negative coefficient indicating that older students had lower scores. In addi-
tion, the random variance of coefficients for this variable across schools 
(0.006388612) is much smaller than that of gevocab (0.137974552), leading 
us to conclude that the relationship of vocabulary on reading varies more 
across schools than does the impact of age.

3.2.3  Interactions and Cross-Level Interactions Using nlme

Interactions among the predictor variables, particularly cross-level interac-
tions, can be very important in the application of multilevel models. Cross-
level interactions occur when the impact of a Level 1 variable on an outcome 
(e.g., vocabulary score) differs based on the value of the Level 2 predictor 
(e.g., school enrollment). Interactions, whether within the same level or 
across levels, are simply the products of two predictors. Thus, incorpora-
tion of interactions and cross-level interactions in multilevel modeling is 
accomplished in much the same manner as we saw for the lm() function in 
Chapter 1. Following are examples for fitting an interaction model for two 
Level 1 variables (Model 3.5) and a cross-level interaction involving Level 1 
and Level 2 variables (Model 3.6).

Model3.5 <- lme(fixed = geread~gevocab + age + gevocab*age,
	 random = ~1|school, data = Achieve)

Model3.6 <- lme(�fixed = geread~gevocab + senroll + 
gevocab*senroll, random = ~1|school, data = 
Achieve)

Model 3.5 defines a multilevel model in which two Level 1 (student 
level) predictors interact with each other. Model 3.5 defines a multilevel 
model with a cross-level interaction in which a Level 1 (student level) 
and  Level  2  (school level) predictor interact. Note that no difference 
exists in the  treatment of variables at different levels when computing 
interactions.

summary(Model3.5)
Linear mixed-effects model fit by REML
	Data: Achieve
	 AIC	 BIC	 logLik
	 43155.49	 43198.94	-21571.75
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Random effects:
	Formula: ~1 | school
	 (Intercept)	Residual
StdDev:	 0.3142524	1.939708

Fixed effects: geread ~ gevocab + age + gevocab * age
	 Value	 Std.Error	 DF	 t-value	 p-value
(Intercept)	 5.187208	 0.8667857	 10157	 5.984418	 0.0000
gevocab	 -0.028078	 0.1881452	 10157	 -0.149233	 0.8814
age	 -0.029368	 0.0080348	 10157	 -3.655077	 0.0003
gevocab:age	 0.005027	 0.0017496	 10157	 2.873204	 0.0041
Correlation:
	 (Intr)	 gevocb	 age
gevocab	 -0.879
age	 -0.998	 0.879
gevocab:age	0.877	 -0.999 -0.879

Standardized Within-Group Residuals:
	 Min	 Q1	 Med	 Q3	 Max
-3.0635106	 -0.5706179	 -0.2108349	 0.3190991	 4.4467448

Number of Observations: 10320
Number of Groups: 160

We can see from the output of Model 3.5 that both age (t = –3.65, p < 0.01) 
and the interaction (gevocab:age) between age and vocabulary (t = 2.87, 
p < 0.01) are significant predictors of reading. Focusing on the interaction, 
the sign on the coefficient is positive. This indicates an enhancing effect: 
as age increases, the relationship of reading and vocabulary becomes 
stronger.

summary(Model3.6)
Linear mixed-effects model fit by REML
	Data: Achieve
	 AIC	 BIC	 logLik
	 43175.57	 43219.02	 -21581.79

Random effects:
	Formula: ~1 | school
	 (Intercept)	 Residual
StdDev:	 0.316492	 1.940268

Fixed effects: geread ~ gevocab + senroll + gevocab * senroll
	 Value	 Std.Error	 DF	 t-value	 p-value
(Intercept)	 1.7477004	0.17274011	10158	 10.117513	 0.0000
gevocab	 0.5851202	0.02986497	10158	 19.592189	 0.0000
senroll	 0.0005121	0.00031863	 158	 1.607242	 0.1100
gevocab:senroll	-0.0001356	0.00005379	10158	 -2.519975	 0.0118
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Correlation:
	 (Intr)	 gevocb	 senrll
gevocab	 -0.782
senroll	 -0.958	 0.735
gevocab:senroll	 0.752	 -0.960	 -0.766

Standardized Within-Group Residuals:
	 Min	 Q1	 Med	 Q3	 Max
-3.1228018	 -0.5697103	 -0.2090374	0.3187827	4.4358936

Number of Observations: 10320
Number of Groups: 160

The output from Model 3.6 has a similar interpretation. When school 
enrollment is used instead of age as a predictor, the main effect of vocabulary 
(t = 19.59, p < 0.001) and the interaction between vocabulary and school enroll-
ment (t = –2.51, p < 0.05) are significant predictors of reading achievement. 
Focusing on the interaction, since the sign on the coefficient is negative we 
would conclude that there is a buffering or inhibitory effect. In other words, 
as school size increases, the relationship between vocabulary and reading 
achievement becomes weaker.

3.2.4  Centering Predictors

Based on discussions in Chapter 2, it may be advantageous to center pre-
dictors, especially when interactions are incorporated. Centering predictors 
can provide slightly easier interpretation of interaction terms and also help 
alleviate multicollinearity arising from inclusion of both main effects and 
interactions in the same model. Recall that centering of a variable entails 
the subtraction of a mean value from each score in the variable. Centering of 
predictors can be accomplished through R by the creation of new variables. 
For example, returning to Model 3.5, grand mean centered gevocab and 
age variables can be created with the following syntax:

Cgevocab <- Achieve$gevocab – mean(Achieve$gevocab)
Cage <- Achieve$age – mean(Achieve$age)

After mean centered versions of the predictors are created, they can be 
incorporated into the model in the same manner used earlier.

Model3.5.C <- lme(�fixed = geread~Cgevocab + Cage + 
Cgevocab*Cage,

	 random = ~1|school, data = Achieve)

summary(Model3.5.C)
Linear mixed-effects model fit by REML
	Data: Achieve
	 AIC	 BIC	 logLik
	 43155.49 43198.94 -21571.75
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Random effects:
Formula: ~1 | school
	 (Intercept)	 Residual
StdDev:	 0.3142524	 1.939708

Fixed effects: geread ~ Cgevocab + Cage + Cgevocab * Cage
	 Value	 Std.Error	 DF	 t-value	p-value
(Intercept)	 4.332326	 0.03206185	 10157	 135.12403	 0.0000
Cgevocab	 0.512480	 0.00837950	 10157	 61.15878	 0.0000
Cage	 -0.006777	 0.00391727	 10157	 -1.72999	 0.0837
Cgevocab:Cage	0.005027	 0.00174965	 10157	 2.87320	 0.0041

Correlation:
	 (Intr)	Cgevcb	 Cage
Cgevocab	 0.008
Cage	 0.007	 0.053
Cgevocab:Cage	0.043	 0.021	 0.205

Standardized Within-Group Residuals:
	 Min	 Q1	 Med	 Q3	 Max
-3.0635106 -0.5706179 -0.2108349 0.3190991 4.4467448

Number of Observations: 10320
Number of Groups: 160

First, notice the identical model fit (compare AIC, BIC, and log likelihood) 
of the centered and uncentered models. This is a good way to ensure that 
centering worked. Looking now to the fixed effects of the model, we see 
some changes in their interpretation. These differences are likely due to 
multicollinearity issues in the original uncentered model. The interaction 
is still significant (t = 2.87, p < 0.05) but we now see a significant effect of 
vocabulary (t = 61.15, p < 0.01). Age is no longer a significant predictor (t = –1.73 
p > 0.05). Focusing on the interaction, recall that when predictors are centered, 
an interaction can be interpreted as the effect of one variable while holding 
the second variable constant. Since the sign on the interaction is positive, 
vocabulary has a positive impact on reading ability if we hold age constant.

3.3  The lme4 Package

3.3.1  Random Intercept Models Using lme4

The previous discussion focused on using the lme function from the nlme 
library to fit multilevel models in R. As noted previously in this chapter, a 
second function for fitting such models, called lme4, is available in the lmer 
library. We will see that in some ways the syntax and output from these two 
functions are virtually identical. However, they exhibit some fundamental 
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differences that we must consider as we apply them. We will focus on some 
of these differences and their implications for practice. In particular, the 
lme4 package offers a slightly more streamlined syntax for fitting multi-
level models. It also provides a more flexible framework for definition of 
complex models. In lme4, we would fit Model 3.1 using the following syntax:

Model3.7 <- lmer(geread~gevocab +(1|school), data = Achieve)

The model is defined in much the same way as we defined the lme func-
tion, where the outcome variable is the sum or linear combination of all of 
the random and fixed effects. The only difference in treatment of fixed and 
random effects is that the random effects require information on the nesting 
structure (students within schools in this case) for the parameter within which 
they vary. The primary difference in model syntax between lme and lmer is 
that the random effect is denoted by its appearance within parentheses rather 
than through explicit assignment using the random statement. This syntax 
will yield the following output:

Model3.7
Linear mixed model fit by REML
Formula: geread ~ gevocab + (1 | school)
	 Data: Achieve
	 AIC	 BIC	 logLik	 deviance	 REMLdev
	43145	43174	 -21569	 43124	 43137
Random effects:
	 Groups	 Name	 Variance	 Std.Dev.
	 school	 (Intercept)	 0.099779	 0.31588
	 Residual	 3.766470	 1.94074
Number of obs: 10320,	 groups: school, 160

Fixed effects:
	 Estimate	 Std. Error	 t value
(Intercept)	2.023343	 0.049305	 41.04
gevocab	 0.512901	 0.008373	 61.26

Correlation of Fixed Effects:
	 (Intr)
gevocab -0.758

From this output we can see one obvious benefit of the lme4 package is 
that all important information is presented without requiring the use of a 
summary statement. The function call alone is enough to provide model 
fit statistics, parameter estimates, parameter significance tests, parameter 
estimate correlations, residuals, and sample summaries. We can also see 
that the lme4 package includes deviance and REML estimated deviance val-
ues in the model fit statistics in addition to the AIC, BIC, and log likelihood 
reported in the nlme package. What the lme4 package does not include are 
p values for model coefficients.
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In comparing the outputs of lme and lmer, we notice that while both 
t values and accompanying p values are reported in the nlme package, 
only the t values for fixed effects are reported in lme4. The reason for 
this discrepancy in the reported results, and specifically for the lack 
of p values is somewhat complex and is not within the scope of this 
book. However,  we should note that the standard approach for finding 
p values based on using  the reference t distribution, which would seem 
to be the intuitively correct step, does in fact not yield correct values in 
many cases. Therefore, some alternative approach for obtaining them is 
necessary.

Douglas Bates, the developer of lme4, recommends the use of Markov 
chain Monte Carlo (MCMC) methods to obtain p values for mixed 
model effects. We review MCMC in greater detail in Chapter 9 so that 
readers may gain an understanding of how this method works. We can 
say at this point that the computer-intensive MCMC approach relies on 
generating a posterior distribution for each model parameter, then using 
the distributions to obtain p values and confidence intervals for each 
parameter estimate. To obtain MCMC p values and confidence intervals 
for lme objects, we must install the coda and languageR packages and 
then use the following command sequence to obtain the desired statistics 
for Model 3.7.

library(coda)
library(languageR)
Mo�del3.7.pvals<-pvals.fnc(Model3.7, nsim = 10000, withMCMC = 
TRUE)

These commands first load the two libraries we need. We then create an 
object that contains the p values and confidence intervals for the various 
terms in Model 3.7 in the object Model3.7.pvals. The actual function 
that we use is pvals.fnc, which is part of the languageR library. In 
turn, this function calls the mcmcsamp function from the coda library. 
Three elements are included in this function call, including the name of 
the lmer object that contains the model fit results (Model3.7), the num-
ber of simulated data sets we want to sample by using MCMC (nsim), and 
whether we want results of each of these 10000 MCMC draws to be saved 
(withMCMC = TRUE). Setting this last condition to TRUE is not necessary, 
as we are interested only in summary statistics. We can obtain the relevant 
information for the fixed and random portions of the model by typing the 
following commands.

Model3.7.pvals$fixed

	 Estimate	 MCMCmean	 HPD95lower	 HPD95upper	 pMCMC	 Pr(>|t|)
(Intercept)	 2.0233	 2.0218	 1.9243	 2.118	 0.0001	 0
gevocab	 0.5129	 0.5134	 0.4966	 0.530	 0.0001	 0
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Model3.7.pvals$random

	 Groups	 Name	Std.Dev.	MCMCmedian	MCMCmean	 HPD95lower	HPD95upper
1	school	(Intercept)	 0.3159	 0.3065	 0.3074	 0.2532	 0.3637
2	Residual		  1.9407	 1.9413	 1.9413	 1.9134	 1.9665

From these results, we can determine that the vocabulary score was statisti-
cally significantly related to the reading score, and that the random effects 
school and Residual, were both different from 0 as well, since neither of 
their confidence intervals included 0.

Returning to model definition using lmer(), multiple predictors at any 
level and interactions between predictors at any level are again entered 
in the model in the same manner as using the lm() or lme() functions. 
The following is the syntax for fitting Model 3.8 using lmer.

Model3.8 <- lmer(�geread~gevocab + senroll +(1|school), data = 
Achieve)

Model3.8
Linear mixed model fit by REML
Formula: geread ~ gevocab + senroll + (1 | school)
	 Data: Achieve
	 AIC	 BIC	logLik	 deviance	REMLdev
	43162	43198	-21576	 43124	 43152
Random effects:
	 Groups	 Name	 Variance	 Std.Dev.
	 school	 (Intercept)	 0.10034	 0.31676
	 Residual		 3.76655	 1.94076
Number of obs: 10320, groups: school, 160

Fixed effects:
	 Estimate	 Std. Error	 t value
(Intercept)	 2.0748764	 0.1139915	 18.20
gevocab	 0.5128742	 0.0083733	 61.25
senroll	 -0.0001026	 0.0002051	 -0.50

Correlation of Fixed Effects:
	 (Intr) gevocb
gevocab -0.327
senroll -0.901 -0.002

Model3.8.pvals<-pvals.fnc(�Model3.8, nsim = 10000, withMCMC = 
TRUE)

Model3.8.pvals$fixed

	 Estimate	 MCMCmean	 HPD95lower	 HPD95upper	 pMCMC	 Pr(>|t|)
(Intercept)	 2.0749	 2.0752	 1.8493	 2.2950	 0.0001	 0.0000
gevocab	 0.5129	 0.5133	 0.4970	 0.5295	 0.0001	 0.0000
senroll	 -0.0001	 -0.0001	 -0.0005	 0.0003	 0.5960	 0.6169
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Model3.8.pvals$random

	 Groups	 Name	 Std.Dev.	MCMCmedian	MCMCmean	HPD95lower	HPD95upper
1	school	(Intercept)	 0.3168	 0.3076	 0.3085	 0.2501	 0.3633
2	Residual		  1.9408	 1.9415	 1.9415	 1.9140	 1.9673

3.3.2  Random Coefficient Models Using lme4

The definition of random effects for slopes in lme4 is very similar to that 
in nlme. The only real difference is that again, as in the random intercepts 
model, the random effects are defined in parentheses as a linear combina-
tion of effects. Returning to Model 3.3, we may express the same multilevel 
model using lmer as:

Model3.9 <- lmer(geread~gevocab + (gevocab|school), data = 
Achieve)

Model3.9
Linear mixed model fit by REML
Formula: geread ~ gevocab + (gevocab | school)
	 Data: Achieve
	 AIC	 BIC	 logLik	 deviance	 REMLdev
	 43005	43048	 -21496	 42981	 42993
Random effects:
	 Groups	 Name	 Variance	 Std.Dev.	 Corr
	 school	 (Intercept)	 0.282692	 0.53169
	 gevocab	 0.019305	 0.13894	 -0.859
Residual		  3.665937	 1.91466
Number of obs: 10320, groups: school, 160

Fixed effects:
	 Estimate	 Std. Error	 t value
(Intercept)	 2.00570	 0.06109	 32.83
gevocab	 0.52036	 0.01442	 36.09

Correlation of Fixed Effects:
	 (Intr)
gevocab -0.867

We must note here that the MCMC approach for obtaining hypothesis test 
results for models estimated using lmer is not currently available for ran-
dom coefficient models.

Although, for the most part, the syntax of lme4 is fairly similar to that of 
lme for relatively simple models, incorporating multiple random slopes into 
multilevel models using lme4 is somewhat different. The random effects 
discussed for the nlme package assume correlated or nested levels. Random 
effects in lme4 may be either correlated or uncorrelated. In this respect, lme4 
provides greater modeling flexibility. This difference in model specification 
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is communicated through a different model syntax. As an example, refer to 
Models 3.10 and 3.11, each of which has the same fixed and random effects. 
However, the random slopes in Model 3.10 are treated as correlated with 
one another; in Model 3.11, they are specified as uncorrelated. This lack of 
correlation in Model 3.11 is expressed by having separate random effect terms 
(gevocab|school) and (age|school). In contrast, Model 3.10 includes both 
random effects in a single term (gevocab + age|school).

Model3.10 <- lmer(�geread~gevocab + age+(gevocab + age|school), 
Achieve)

Model3.11 <- lmer(�geread~gevocab + age+ (gevocab|school) + 
age|school), Achieve)

Model3.10
Linear mixed model fit by REML
Formula: geread ~ gevocab + age + (gevocab + age | school)
	 Data: Achieve
	 AIC	 BIC	 logLik	 deviance	 REMLdev
	 43015	43088	 -21498	 42974	 42995
Random effects:
	Groups	 Name	 Variance	 Std.Dev.	 Corr
	school	 (Intercept)	 1.8361e-02	 0.135503
	 gevocab	 1.9026e-02	 0.137936	 0.465
	 age	 2.4641e-05	 0.004964	 -0.197	 -0.960
	Residual	 3.6641e+00	 1.914182
Number of obs: 10320, groups: school, 160

Fixed effects:
	 Estimate	 Std. Error	 t value
(Intercept)	 2.965272	 0.413052	 7.18
gevocab	 0.519278	 0.014351	 36.18
age	 -0.008881	 0.003822	 -2.32

Correlation of Fixed Effects:
	 (Intr)	 gevocb
gevocab	 -0.081
age	 -0.989	 -0.047

Model3.11
Linear mixed model fit by REML
Formula: �geread ~ gevocab + age + (gevocab | school) + (age | 

school)
	 Data: Achieve
	 AIC	 BIC	 logLik	 deviance	 REMLdev
	43017	43089	 -21498	 42975	 42997
Random effects:
	Groups	 Name	 Variance	 Std.Dev.	 Corr
	school	 (Intercept)	2.1436e-01	 0.46299441
	 gevocab	 1.9194e-02	 0.13854364	 -0.976



61Fitting Two-Level Models in R

	school	 (Intercept)	2.2262e-02	 0.14920466
	 age	 8.8027e-07	 0.00093822	 1.000
	Residual	 3.6649e+00	 1.91439622
Number of obs: 10320, groups: school, 160

Fixed effects:
	 Estimate	 Std. Error	 t value
(Intercept)	 2.973619	 0.414551 	 7.17
gevocab	 0.519191	 0.014397	 36.06
age	 -0.008956	 0.003798	 -2.36

Correlation of Fixed Effects:
	 (Intr)	 gevocb
gevocab	 -0.159
age	 -0.989	 0.033

Notice the difference in how random effects are expressed in lmer between 
Models 3.10 and 3.11. Output in Model 3.10 provides identical estimates to 
those of the nlme Model 3.4. With random effects, R reports estimates for the 
variability of the random intercept, variability for each random slope, and 
the correlations between the random intercept and random slopes. Output 
in Model 3.11, however, reports two different sets of uncorrelated random 
effects.

The first set reports variability for the random intercept and variability 
for the random slope for vocabulary and correlation between the random 
intercept and random slope for vocabulary. The second set of random 
effects reports variability of a second random intercept, variability in the 
random slope for age, and the correlation between the random intercept 
and the random slope for age. The random slope for vocabulary and the 
random slope for age are not allowed to correlate. Finally, we can obtain 
p values and confidence intervals for each model term using the pvals.fnc 
function based on the MCMC approach reviewed earlier in this chapter.

3.4  Additional Options

R provides several additional options for applying multilevel models through 
both the nlme and lme4 packages.

3.4.1  Parameter Estimation Method

Both nlme and lme4 by default use restricted maximum likelihood (REML) 
estimation. However, each package also allows use of maximum likeli-
hood (ML) estimation instead. Model 3.12 demonstrates syntax for fitting a 
multilevel model using ML in the nlme package. To change the estimation 
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method in nlme, the call is method = "ML". Model 3.13 depicts fitting of the 
same multilevel model using the lme4 package. The call to designate the use 
of the ML to be used is REML = FALSE.

Model3.12 <- lme(�fixed = geread~gevocab, random = ~1|school, 
data = Achieve, method = "ML")

Model3.13 <- lmer(�geread~gevocab + (1|school), data = Achieve, 
REML = FALSE)

3.4.2  Estimation Controls

Sometimes a correctly specified model will not reach a solution (converge) 
in the default settings for model convergence. This problem often can be 
fixed by changing the default estimation controls using the control option. 
Convergence issues can be fixed frequently by changing the model iteration 
limit (maxIter) or by changing the model optimizer (opt). To specify which 
controls will be changed, R must be given a list of controls and their new val-
ues. For example, control = list(maxIter = 100, opt = "optim") 
will change the maximum number of iterations to 100 and the optimizer to 
optim. These control options are placed in the R code in the same manner 
as choice of estimation method (separated from the rest of the syntax by 
a comma). They are the same for both the nlme and lme4 packages. See 
Models 3.14 and 3.15 below. A comprehensive list of estimation controls can 
be found on the R help ?lme and ?lme4 pages.

Model3.14 <- lme(�fixed = geread~gevocab, random = ~1|school, 
data = Achieve, method = "ML", control = 
list(maxIter = 100, opt = "optim"))

Model3.15 <- lmer(�geread~gevocab + (1|school), data = Achieve, 
REML = FALSE, control = list(maxIter = 100, 
opt = "optim"))

3.4.3  Chi Square Test for Comparing Model Fit

We previously explained how the fits of various models can be compared 
using the AIC and BIC information indices. However, these statistics are 
descriptive in nature so that no hypotheses about relative model fit can be 
tested formally. Thus, if the AIC for one model is 1000.5 and 999 for another 
models, we cannot know whether the apparently small difference in fit 
within the sample is truly representative of a difference in fit in the general 
population. Therefore, when we work with nested models and one model 
is a more constrained (i.e., simpler) version of another, we may wish to test 
whether overall fit of the two models differs. Such hypothesis testing is pos-
sible using the chi-square difference test based on the deviance statistic. 
When the fits of nested models are compared, the difference in chi-square 
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values for each model deviance can be used to compare model fit. After each 
of the models in question has been fit, the difference in chi-square values can 
be obtained using the anova() function call.

For models run using the nlme package, the anova() command will pro-
vide accurate comparisons only if maximum likelihood estimation is used. 
For models run using lme4, the anova() command will work for both 
maximum likelihood and restricted maximum likelihood. When maximum 
likelihood is used, both fixed and random effects are compared simultane-
ously. When restricted maximum likelihood is used, only random effects are 
compared. The following is an example of comparing fit with the chi-square 
difference statistic for Models 3.1 and 3.2 that were discussed in detail above.

Model3.1 <- lme(�fixed = geread~gevocab, random = ~1|school, 
data = Achieve, method = "ML")

Model3.2 <- lme(�fixed = geread~gevocab + senroll, random = 
~1|school, data = Achieve, method = "ML")

anova(Model3.1, Model3.2)

anova(Model3.1 Model3.2)

Model3.1 1
4 43132.43 43161.40 -21562.22
Mo�del3.2 2 5 43134.18 43170.39 -21562.09 1 vs 2 0.2550617 
0.6135

3.4.4  Confidence Intervals for Parameter Estimates

Readers who are familiar with multilevel modeling may have noticed that 
neither nlme nor lme4 output provides statistical significance tests for the 
variance of random effects. As outlined in Chapter 2, statistical significance 
of random effects provides very useful information about the variability of 
the clusters under study. Using the example from this chapter, the signifi-
cance of the random intercept indicates variations in reading ability among 
schools in the sample; i.e., different schools exhibit significantly different 
mean reading scores. Similarly, a significant random slope for vocabulary 
would indicate significant variation in the impact of vocabulary on reading 
ability across the schools. This is often very useful information by provid-
ing insights into the factors that contribute to score differences. However, 
the current packages do not provide an option for testing the significance of 
random effects.

It is still possible, however, to obtain information about significance of 
random effects by creating confidence intervals. With the nlme package, 
the function call intervals() can be used to generate 95% confidence 
intervals for the fixed effects and the variances of the random effects. The 
confidence intervals obtained for the variances of the random effects can 
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be used to determine the significance of the random effects. For example, 
returning to Model 3.3 covered earlier in this chapter, we determined that 
vocabulary was a significant predictor of reading ability. However, we could 
not determine from the output of Model 3.3 whether the variability in the 
random intercept or random slope was significantly different from 0. If not 
different, the result would indicate that the mean reading achievement and/
or the relationship of vocabulary score to reading achievement did not differ 
across schools. To determine the significance of the random effects we can 
use the intervals() function call.

intervals(Model3.3)

Approximate 95% confidence intervals

Fixed effects:
	 lower	 est.	 upper
(Intercept)	 1.8859621	 2.0057064	 2.1254506
gevocab	 0.4920982	 0.5203554	 0.5486126
attr(,"label")
[1] "Fixed effects:"

Random Effects:
Level: school

	 lower	 est.	 upper
sd((Intercept))	 0.4250700	 0.5316531	 0.6649611
sd(gevocab)	 0.1153701	 0.1389443	 0.1673356
cor((Intercept),gevocab)	-0.9178709	 -0.8585096	 -0.7615768

Within-group standard error:
	 lower	 est.	 upper
1.888327 1.914663 1.941365

For the intercept, the 95% confidence interval lies between 0.425 and 0.665. 
Thus, we are 95% confident that the actual variance component for the 
intercept was between these two values. Likewise, the 95% confidence inter-
val for the random slope variance was between 0.115 and 0.167. From these 
values, we can see that 0 did not lie in the interval for either random effect, 
intercept, or slope. Thus, we can conclude that both the random intercept and 
random slope were significantly different from 0.

Summary

This chapter put to work the concepts learned in Chapter 2 to work using R. 
We learned the basics of fitting two-level models when a dependent variable 
is continuous using the lme and lmer packages. Within this multilevel 
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framework, we learned how to fit the null, random intercept, and random 
slopes models. We also covered independent variables at both levels of data 
and learned how to compare the fits of models with one another. This last 
point will prove particularly useful as we engage in the process of select-
ing the most parsimonious (simplest) model that also explains the depen-
dent variable adequately. Of greatest import in this chapter, however, is the 
ability to fit multilevel models using both lme and lme4 in R and correctly 
interpreting the resultant output. If you have mastered those skills, you are 
ready to move to Chapter 4, where we extend the model to include a third 
level in the hierarchy. As we will see, the actual fitting of three-level models 
is very similar to fitting two-level models studied in the chapter.
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